

CAN Controller and Transceiver with SPI / I²C Interface

GENERAL DESCRIPTION

The IS31IO8972 is a stand-alone Controller Area Network (CAN) protocol controller with the embedded CAN transceiver. It supports CAN 2.0B standard and the maximal bit rate is 1 Mb/s. It is capable of transmitting and receiving standard and extended message frames. It includes eight independent transmit buffers with autodispatch function and 1024-byte receive FIFO with 12 ID acceptance filtering and message management. The MCU communication is implemented via an industry standard Serial Peripheral Interface (SPI) and I²C bus.

FEATURES

- Single + 5V power supply
- Maximal operating clock up to 24MHz
- Built-in one CAN controller according to CAN protocol version 2.0B.
 - 0~8 byte message length
 - Standard and extended data frames
 - Programmable bit rate up to 1Mb/s
 - Support for remote frames
 - 1024 Bytes receive FIFO
 - 12 full acceptance filters
 - 8 full filter masks
 - 8 transmit buffers with abort feature
 - Auto-dispatch function for each transmit buffer
 - Listen mode
 - Loop-back mode for self-test operation
- Built-in CAN transceiver full support CAN v2.0B specification
 - Built-in IOSC up to 16MHz
 - Hardware interface
 - High speed SPI interface up to 3Mb/s bit rate
 - Supports SPI mode 0,0 and 1,1
 - High speed Slave I²C interface up to 2Mb/s bit rate
 - Interrupt output pin with selectable enables
 - Low power CMOS technology
 - 50mA active current typical
 - 1mA standby current
- External wake-up by SPI/ I²C and CAN receiver
- Industrial operating temperature range (-40°C ~ +125°C)
- ◆ 20-pin SSOP packages
- RoHS compliance

BLOCK DIAGRAM

Block Diagram of IS31IO8972

PIN CONFIGURATION

A "CMOS pin" can be used as Input or Output mode. To use these pins as output mode, S/W or H/W needs to set the corresponding output enable control bit to 1. Otherwise, the output enable control bit should clear to 0. In output mode, these pins can sink and drive at least 4mA current.

Name	Pin No.	Default	Pin Config.	Function Description			
CLKOUT / GPIO1	1	0	В	Oscillator frequency clock output / General purpose I/O The external pull-down or pull-up will determine I ² C ID address during reset			
XOSC2	2	0	Α	Oscillator output			
XOSC1	3	I	Α	Oscillator input			
RSTN	4	I	IU	Active low reset input			
VDDIO	5	-	А	+3.0V ~ +5.5V chip power supply. A good decoupling capacitor between VDDIO and VSSIO pins is critical for good performance.			
VDD18	6	-	А	+1.8V positive core power output. A good decoupling capacitor between VDD18 and VSSIO pins is critical for good performance.			
VSSIO	7	-	А	Ground for digital core and I/O			
SPI_CK / SCL	8	I	I IU	If MSEL0 is one, enable SPI mode, this pin is SPI serial clock input. If MSEL0 is zero and SPI_SI/MSEL1 is zero, enable I ² C mode, this pin is I ² C clock input with internal pull-high			
SPI_SO / SDA	9	В	O BU	If MSEL0 is one, enable SPI mode, this pin is SPI serial data output. If MSEL0 is zero and SPI_SI/MSEL1 is zero, enable I ² C mode, this pin is I ² C data bus line with internal pull-high			
SPI_SI / MSEL1	10	I	I	If MSEL0 is one, enable SPI mode, this pin is SPI serial data input If MSEL0 is zero and this pin is zero, enable I ² C interface If MSEL0 is zero and this pin is one, enable Transceiver only mode			
SPI_CSn / GPIO0	11	I	IU B	If MSEL0 is one, enable SPI mode, this pin is SPI chip select (active low) with internal pull-high. If MSEL is zero, this pin is a general purpose I/O External pull-down or pull-up will determine I ² C ID address during reset			
MSEL0	12	I	I	Host mode select input, 1:SPI mode, 0: I ² C or Transceiver only mode			
VSS_CAN	13	-	А	Ground for CAN transceiver			
CANLX	14	-	А	Common-mode stabilization output of CANL			
CANL	15	-	А	Low-level CAN bus line			
CANH	16	-	А	High-level CAN bus line			
CANHX	17	-	А	Common-mode stabilization output of CANH			
VDD_CAN	18		А	+5V positive power supply for CAN transceiver. A good decoupling capacitor between VDD_CAN and VSS_CAN pins is critical for good performance.			
TMODE	19	I	I	Test mode enable, 1:ATPG mode, 0:Normal mode			

The pins functionality is described in the following table. There are no three states outputs pins and internal signals.

Revision 0A 10/01/2018

Name	Pin No.	Default	Pin Config.	Function Description
INTn	20	0	0	Interrupt output (active low)
				Table: PAD Description

Note: Pin Configuration description

I/O Configure Type 'B': Standard CMOS bi-directional pad.

I/O Configure Type 'BU': Standard CMOS bi-directional pad with pull-high resistor.

I/O Configure Type 'I': Input only pad.

I/O Configure Type 'IU': Input only pad with an internal pull-up resistor.

1. CAN CONTROLLER

1.1 Brief Introduction to CAN

The Controller Area Network (CAN) is a serial asynchronous bus allowing multi-master communications. The CAN bus uses a single terminated twisted pair with maximum data rate of 1MBps. Typical length of the bus can be up to 40 meters. One unusual aspect of the CAN protocol is its message based nature. Nodes on the bus do not have specific address instead the messages have unique identifiers which are used for determining its priority. Each node depending on its functionality transmits specific types of messages and also responds to specific related messages. CAN is especially popular in connecting electronic control modules, sensors, actuators in automotive and industrial applications because its simple bus structure and fault-tolerant capability from extensive error checking. The physical media of typical CAN bus is a twisted pair terminated with 1200hm on both ends. The twisted pair has two signals, CANH and CANL. CANH and CANL forms a 5V pseudo differential signal thus have reliable transmissions even under high noise environment. There are two possible logic states on the bus. Dominant state (logic 0) is when CANH is actively pulled to 5V and CANL is actively pulled to 0V. Recessive state (logic 1) is when the bus is not actively driven and both CANH and CANL are pulled toward 2.5V by the termination resistors. The bus also exhibits the wire-AND characteristics, that is bus is in recessive state if only if all nodes are recessive, and bus is in dominant state if one or more nodes are dominant. Because of this pseudo differential nature, it is possible to maintain correct data transmission even if one of the wires is broken. To drive the CAN bus, typically an external transceiver is used to provide isolated drive.

The CAN protocol is a modified version of Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) similar to Ethernet. If two nodes are trying to send at the same time, instead of collision avoidance, the ID field of message will resolve itself which allows the higher priority message to continue and lower priority message been postponed. The typical standard CAN frame format and extended format are shown in the following

Standard Frame Format (SFF)

		()		11					
Q		<u>م ۵</u> ۵		7/			=1 K	EOF=1	IFS=1
Ľ.	ID[10-0]	토道빙DLC[3-0]	DATA1[7-0]		DATA8[7-0]	CRC[14-0]	ΣŪ	=	>=
Š				11				7BT	7BT
				-/ /	.				I
				11					

11

Extended Frame Format (EFF)

		•	•			/ /	1				
Q				~ ~ ~		7/			<u> </u>	EOF=1	IFS=1
Ü	ID[10-0]	R H	ID[28-11]	E _ DLC[3-0]	DATA1[7-0]			DATA8[7-0]	CRC[14-0]	=	>=
õ						_/ [_				7BT	7BT
						77-					

11

The frame starts with a bit 0 of Start of Frame (SOF), and followed by a 11-bit ID field. Because the dominant state transmitted by one node will overwrite any other nodes transmitting recessive state, the message ID with lowest number will win the bus arbitration. After arbitration, RTR bit indicate whether this is a transmit message (RTR=0), or a Remote Transmission Request (RTR=1) message. R1 and R0 are two reserve bits which should both be 0. The Data Length Code (DLC) indicates the byte count of following data. DLC must be less than 9. After data field, a 15-bit CRC is appended, and a CRC delimiter is the last bit of CRC field. The receive node will acknowledge the successful reception by sending 0 during the ACK slot. An ACK delimiter and along with minimum 7 bit time of EOF field is ensured for the bus to enter into bus IDLE state. And a minimum 3 BT (typically implemented as 7 BT) of recessive state and bus IDLE state should be used for inter-frame spacing.

The message format can be further categorized into standard (SFF) or extended format (EFF). The difference in SFF and EFF is in IDE bit. If IDE=dominant, the message is SFF, and if IDE=recessive, the message is EFF. The extended format provides 29-bit ID addressing whit the additional 18 bit ID following the IDE bit. In terms of purpose of message, the message can be considered as either data frame or remote frame. A data frame carries data sent by the transmitter to receivers (plural here). A remote frame is transmitted by a node to request other nodes to respond with data frame using same message ID. Both data frame and remote frame can take either standard or extended format.

CAN bus uses NRZ coding. To ensure enough edges for synchronization, Bit-Stuffing is used. An opposite polarity bit is inserted after 5 consecutive bits of the same level. Bit-Stuffing starts with SOF and ends with CRC (before CRC delimiter). The initial falling edge of SOF provides a hard synchronization on the start of the message.

CAN bus include many error checking mechanisms to ensure reliable operations. This includes CRC checking built-in in the message frame. CRC is calculated over the non-stuffed bit stream data starting with SOF and ends with last bit of data field. In case of CRC mismatch, the frame is discarded, and ACK bit is not responded. Nodes on the bus will also detect frame format error, bit stuffing errors. All these error been detected, a node will transmit an error frame. The error frame consists of 6 consecutive dominant bits as error flag and may be extended to 12 bits when multiple nodes are responding to the same error. This violation of bit-stuffing (more than 5 consecutive same bits) will ensure all nodes on the bus will detect the error and the error flag thus might be further extended up 12 bit times by those nodes detecting the same error. After error flag, the error frame is terminated with minimum 3 bit time of recessive state as error delimiter. Another special frame with the same format as error frame is the overload frame which is sent by a receiving node in response to a remote request message when this node can not meet the response requirement. Overload frame is also sent by nodes when detecting a violation of frame intermission rule (each frame must be separated by 3 bit time of recessive bits).

There are three fundamental states for error handling in each CAN node. This is shown in the following state diagram. REC is receive error count, and TEC is transmit error count.

The node is in normal operation when in Error Active state. In this state, the node can send all frames including active error flag with six consecutive 'dominant' bits. When error count reaches 127, it enters Error Passive states, and the node can send all frames and passive error flag with six consecutive 'recessive' bits. When error count exceeds 255, the node enters Bus Off state and is isolated from the bus. This mechanism ensures a faulty node does cause bus dead-lock. The exit of Bus Off state can only be done by re-initialization or if auto recovery is enabled when 128 occurrence of 11 consecutive recessive bit.

1.2 Features of CAN Controller

The CAN controller is compatible with CAN 2.0A and 2.0B standards. The controller can be configured as normal operating mode or listen-only mode. A self-test loop-back mode can also be enabled to perform internal loop-back test of the CAN controller. The receiver includes four acceptance filters that are used for ID filtering. The matched messages are stored in receive FIFO shared with CPU XRAM. The transmitter includes a 13-byte transmit buffer in XFR consisting of frame information, 4 bytes of message ID, and 8 bytes of message data. The transmitter also includes three dispatchers. The dispatcher is used for automatically transmit a pre-determined message at a fixed programmable time interval without CPU intervention. Each dispatcher also include a 13-byte transmit buffer in XFR similar to the main transmit path.

After reset, the CAN controller is put in reset mode with all state-machines forced in the initialization states. The user must exit this reset mode by setting CANRST=0 to enter into operating modes.

In IS31IO8972, the CAN controller has the main function as follows: Operating mode Reset mode Listen-Only mode Bus Auto-Recovery Self-test mode Self-reception Programmable Baud-Rate 8 transmit buffers for standard and extended message frames Transmit dispatch 8 acceptance filter and mask for receiving frame Error detection Loop test

1.3 <u>Registers Map</u>

IS31IO8972 uses 8-bit address to indicate all control, status and data SFRs of CAN controller. The undefined address reserved is for future use. Reading and writing operation to those addresses has no effect. Some registers are accessible in operating mode and some registers are accessible in Reset mode.

Address	Operating Mode		Reset Mode			
(8-bit)	read	write	read	write		
00H	Mode	Mode	Mode	Mode		
01H	00H	Command Register	00H	-		
02H	Status Register	-	Status Register	-		
03H	Interrupt Flag	-	00H	-		
04H	Interrupt Enable	Interrupt Enable	Interrupt Enable	Interrupt Enable		
05H	TX Status 0	TX Request 0	00H	-		
06H	TX Status 1	TX Request 1	00H	-		
07H	Arbitration Lost	-	Arbitration Lost	-		
08H	Error Code	-	Error Code	-		
09H	Bus Timing 0	-	Bus Timing 0	Bus Timing 0		
0AH	Bus Timing 1	-	Bus Timing 1	Bus Timing 1		
0BH	Error Warming Limit	-	Error Warming Limit	Error Warming Limit		
0CH	RX Error Counter	-	RX Error Counter	RX Error Counter		
0DH	TX Error Counter	-	TX Error Counter	TX Error Counter		
0EH	Dispatch Timer 0 Low	-	Dispatch Timer 0 Low	Dispatch Timer 0 Low		
0FH	Dispatch Timer 0 High	- Dispatch Timer 0 High		Dispatch Timer 0 High		
10H	RX Filter Number	-	RX Filter Number	-		
11H	RX Information	-	RX Information	-		
12H	RX ID-3	-	RX ID-3	-		
13H	RX ID-2	-	RX ID-2	-		
14H	RX ID-1	-	RX ID-1	-		
15H	RX ID-0	-	RX ID-0	-		
16H	RX DATA-0	-	RX DATA-0	-		
17H	RX DATA-1	-	RX DATA-1	-		
18H	RX DATA-2	-	RX DATA-2	-		
19H	RX DATA-3	-	RX DATA-3	-		
1AH	RX DATA-4	-	RX DATA-4	-		
1BH	RX DATA-5	-	RX DATA-5	-		
1CH	RX DATA-6	-	RX DATA-6	-		
1DH	RX DATA-7	-	RX DATA-7	-		
1EH	Dispatch Timer 1 Low	-	Dispatch Timer 1 Low	Dispatch Timer 1 Low		
1FH	Dispatch Timer 1 High	-	Dispatch Timer 1 High	Dispatch Timer 1 High		
20H	Filter0 Acceptance-3	-	Filter0 Acceptance-3	Filter0 Acceptance-3		
21H	Filter0 Acceptance-2	-	Filter0 Acceptance-2	Filter0 Acceptance-2		
22H	Filter0 Acceptance-1	-	Filter0 Acceptance-1	Filter0 Acceptance-1		

Address	G Operating Mode		Reset Mode			
(8-bit)	read	write	read	write		
23H	Filter0 Acceptance-0	-	Filter0 Acceptance-0	Filter0 Acceptance-0		
24H	Filter1 Acceptance-3	-	Filter1 Acceptance-3	Filter1 Acceptance-3		
25H	Filter1 Acceptance-2	-	Filter1 Acceptance-2	Filter1 Acceptance-2		
26H	Filter1 Acceptance-1	-	Filter1 Acceptance-1	Filter1 Acceptance-1		
27H	Filter1 Acceptance-0	-	Filter1 Acceptance-0	Filter1 Acceptance-0		
28H	Filter2 Acceptance-3	-	Filter2 Acceptance-3	Filter2 Acceptance-3		
29H	Filter2 Acceptance-2	-	Filter2 Acceptance-2	Filter2 Acceptance-2		
2AH	Filter2 Acceptance-1	-	Filter2 Acceptance-1	Filter2 Acceptance-1		
2BH	Filter2 Acceptance-0	-	Filter2 Acceptance-0	Filter2 Acceptance-0		
2CH	Filter3 Acceptance-3	-	Filter3 Acceptance-3	Filter3 Acceptance-3		
2DH	Filter3 Acceptance-2	-	Filter3 Acceptance-2	Filter3 Acceptance-2		
2EH	Filter3 Acceptance-1	-	Filter3 Acceptance-1	Filter3 Acceptance-1		
2FH	Filter3 Acceptance-0	-	Filter3 Acceptance-0	Filter3 Acceptance-0		
30H	Filter4 Acceptance-3	-	Filter4 Acceptance-3	Filter4 Acceptance-3		
31H	Filter4 Acceptance-2	-	Filter4 Acceptance-2	Filter4 Acceptance-2		
32H	Filter4 Acceptance-1	-	Filter4 Acceptance-1	Filter4 Acceptance-1		
33H	Filter4 Acceptance-0	-	Filter4 Acceptance-0	Filter4 Acceptance-0		
34H	Filter5 Acceptance-3	-	Filter5 Acceptance-3	Filter5 Acceptance-3		
35H	Filter5 Acceptance-2	-	Filter5 Acceptance-2	Filter5 Acceptance-2		
36H	Filter5 Acceptance-1	-	Filter5 Acceptance-1	Filter5 Acceptance-1		
37H	Filter5 Acceptance-0	-	Filter5 Acceptance-0	Filter5 Acceptance-0		
38H	Filter6 Acceptance-3	-	Filter6 Acceptance-3	Filter6 Acceptance-3		
39H	Filter6 Acceptance-2	-	Filter6 Acceptance-2	Filter6 Acceptance-2		
3AH	Filter6 Acceptance-1	-	Filter6 Acceptance-1	Filter6 Acceptance-1		
3BH	Filter6 Acceptance-0	-	Filter6 Acceptance-0	Filter6 Acceptance-0		
3CH	Filter7 Acceptance-3	-	Filter7 Acceptance-3	Filter7 Acceptance-3		
3DH	Filter7 Acceptance-2	-	Filter7 Acceptance-2	Filter7 Acceptance-2		
3EH	Filter7 Acceptance-1	-	Filter7 Acceptance-1	Filter7 Acceptance-1		
3FH	Filter7 Acceptance-0	-	Filter7 Acceptance-0	Filter7 Acceptance-0		
40H	Filter8 Acceptance-3	-	Filter8 Acceptance-3	Filter8 Acceptance-3		
41H	Filter8 Acceptance-2	-	Filter8 Acceptance-2	Filter8 Acceptance-2		
42H	Filter8 Acceptance-1	-	Filter8 Acceptance-1	Filter8 Acceptance-1		
43H	Filter8 Acceptance-0	-	Filter8 Acceptance-0	Filter8 Acceptance-0		
44H	Filter9 Acceptance-3	-	Filter9 Acceptance-3	Filter9 Acceptance-3		
45H	Filter9 Acceptance-2	-	Filter9 Acceptance-2	Filter9 Acceptance-2		
46H	Filter9 Acceptance-1	-	Filter9 Acceptance-1	Filter9 Acceptance-1		
47H	Filter9 Acceptance-0	-	Filter9 Acceptance-0	Filter9 Acceptance-0		
48H	Filter10 Acceptance-3	-	Filter10 Acceptance-3	Filter10 Acceptance-3		
49H	Filter10 Acceptance-2	-	Filter10 Acceptance-2	Filter10 Acceptance-2		

Address	Operatir	ng Mode	Reset Mode		
(8-bit)	read	write	read	write	
4AH	Filter10 Acceptance-1	-	Filter10 Acceptance-1	Filter10 Acceptance-1	
4BH	Filter10 Acceptance-0	-	Filter10 Acceptance-0	Filter10 Acceptance-0	
4CH	Filter11 Acceptance-3	-	Filter11 Acceptance-3	Filter11 Acceptance-3	
4DH	Filter11 Acceptance-2	-	Filter11 Acceptance-2	Filter11 Acceptance-2	
4EH	Filter11 Acceptance-1	-	Filter11 Acceptance-1	Filter11 Acceptance-1	
4FH	Filter11 Acceptance-0	-	Filter11 Acceptance-0	Filter11 Acceptance-0	
50H	Filter Mask 0-3	-	Filter Mask 0-3	Filter Mask 0-3	
51H	Filter Mask 0-2	-	Filter Mask 0-2	Filter Mask 0-2	
52H	Filter Mask 0-1	-	Filter Mask 0-1	Filter Mask 0-1	
53H	Filter Mask 0-0	-	Filter Mask 0-0	Filter Mask 0-0	
54H	Filter Mask 1-3	-	Filter Mask 1-3	Filter Mask 1-3	
55H	Filter Mask 1-2	-	Filter Mask 1-2	Filter Mask 1-2	
56H	Filter Mask 1-1	-	Filter Mask 1-1	Filter Mask 1-1	
57H	Filter Mask 1-0	-	Filter Mask 1-0	Filter Mask 1-0	
58H	Filter Mask 2-3	-	Filter Mask 2-3	Filter Mask 2-3	
59H	Filter Mask 2-2	-	Filter Mask 2-2	Filter Mask 2-2	
5AH	Filter Mask 2-1	-	Filter Mask 2-1	Filter Mask 2-1	
5BH	Filter Mask 2-0	-	Filter Mask 2-0	Filter Mask 2-0	
5CH	Filter Mask 3-3	-	Filter Mask 3-3	Filter Mask 3-3	
5DH	Filter Mask 3-2	-	Filter Mask 3-2	Filter Mask 3-2	
5EH	Filter Mask 3-1	-	Filter Mask 3-1	Filter Mask 3-1	
5FH	Filter Mask 3-0	-	Filter Mask 3-0	Filter Mask 3-0	
60H	Filter Mask 4-3	-	Filter Mask 4-3	Filter Mask 4-3	
61H	Filter Mask 4-2	-	Filter Mask 4-2	Filter Mask 4-2	
62H	Filter Mask 4-1	-	Filter Mask 4-1	Filter Mask 4-1	
63H	Filter Mask 4-0	-	Filter Mask 4-0	Filter Mask 4-0	
64H	Filter Mask 5-3	-	Filter Mask 5-3	Filter Mask 5-3	
65H	Filter Mask 5-2	-	Filter Mask 5-2	Filter Mask 5-2	
66H	Filter Mask 5-1	-	Filter Mask 5-1	Filter Mask 5-1	
67H	Filter Mask 5-0	-	Filter Mask 5-0	Filter Mask 5-0	
68H	Filter Mask 6-3	-	Filter Mask 6-3	Filter Mask 6-3	
69H	Filter Mask 6-2	-	Filter Mask 6-2	Filter Mask 6-2	
6AH	Filter Mask 6-1	-	Filter Mask 6-1	Filter Mask 6-1	
6BH	Filter Mask 6-0	-	Filter Mask 6-0	Filter Mask 6-0	
6CH	Filter Mask 7-3	-	Filter Mask 7-3	Filter Mask 7-3	
6DH	Filter Mask 7-2	-	Filter Mask 7-2	Filter Mask 7-2	
6EH	Filter Mask 7-1	-	Filter Mask 7-1	Filter Mask 7-1	
6FH	Filter Mask 7-0	-	Filter Mask 7-0	Filter Mask 7-0	
70H	Filter-Low Enable	-	Filter-Low Enable	Filter-Low Enable	

Address	G Operating Mode		Reset Mode			
(8-bit)	read	write	read	write		
71H	Filter-High Enable	-	Filter-High Enable	Filter-High Enable		
72H	Filter Interrupt Enable	Filter Interrupt Enable	Filter Interrupt Enable	Filter Interrupt Enable		
73H	Extra Interrupt Enable	Extra Interrupt Enable	Extra Interrupt Enable	Extra Interrupt Enable		
74H	Filter Interrupt Flag	-	Filter Interrupt Flag	-		
75H	Extra Interrupt Flag	-	Extra Interrupt Flag	-		
76H	Transceiver Error Code	Transceiver Error Code	Transceiver Error Code	Transceiver Error Code		
77H	Regulator Configuration	Regulator Configuration	Regulator Configuration	Regulator Configuration		
78H	I/O Control	I/O Control	I/O Control	I/O Control		
79H	GPIO Data	GPIO Data	GPIO Data	GPIO Data		
7AH	RX Frame Count	-	RX Frame Count	-		
7B~7CH	-	-	-	-		
7DH	Fault Detect Time	Fault Detect Time	Fault Detect Time	Fault Detect Time		
7EH	-	CAN Test Enable	-	CAN Test Enable		
7FH	-	Protection Locker	-	Protection Locker		
80H	TX0 Configuration	TX0 Configuration	TX0 Configuration	TX0 Configuration		
81H	TX0 Information	TX0 Information	TX0 Information	TX0 Information		
82H	TX0 ID-3	TX0 ID-3	TX0 ID-3	TX0 ID-3		
83H	TX0 ID-2	TX0 ID-2	TX0 ID-2	TX0 ID-2		
84H	TX0 ID-1	TX0 ID-1	TX0 ID-1	TX0 ID-1		
85H	TX0 ID-0	TX0 ID-0	TX0 ID-0	TX0 ID-0		
86H	TX0 DATA-0	TX0 DATA-0	TX0 DATA-0	TX0 DATA-0		
87H	TX0 DATA-1	TX0 DATA-1	TX0 DATA-1	TX0 DATA-1		
88H	TX0 DATA-2	TX0 DATA-2	TX0 DATA-2	TX0 DATA-2		
89H	TX0 DATA-3	TX0 DATA-3	TX0 DATA-3	TX0 DATA-3		
8AH	TX0 DATA-4	TX0 DATA-4	TX0 DATA-4	TX0 DATA-4		
8BH	TX0 DATA-5	TX0 DATA-5	TX0 DATA-5	TX0 DATA-5		
8CH	TX0 DATA-6	TX0 DATA-6	TX0 DATA-6	TX0 DATA-6		
8DH	TX0 DATA-7	TX0 DATA-7	TX0 DATA-7	TX0 DATA-7		
8E~8FH	-	-	-	-		
90H	TX1 Configuration	TX1 Configuration	TX1 Configuration	TX1 Configuration		
91H	TX1 Information	TX1 Information	TX1 Information	TX1 Information		
92H	TX1 ID-3	TX1 ID-3	TX1 ID-3	TX1 ID-3		
93H	TX1 ID-2	TX1 ID-2	TX1 ID-2	TX1 ID-2		
94H	TX1 ID-1	TX1 ID-1	TX1 ID-1	TX1 ID-1		
95H	TX1 ID-0	TX1 ID-0	TX1 ID-0	TX1 ID-0		
96H	TX1 DATA-0	TX1 DATA-0	TX1 DATA-0	TX1 DATA-0		
97H	TX1 DATA-1	TX1 DATA-1	TX1 DATA-1	TX1 DATA-1		
98H	TX1 DATA-2	TX1 DATA-2	TX1 DATA-2	TX1 DATA-2		
99H	TX1 DATA-3	TX1 DATA-3	TX1 DATA-3	TX1 DATA-3		

Address	ddress Operating Mode		Reset	Mode	
(8-bit)	read	write	read	write	
9AH	TX1 DATA-4	TX1 DATA-4	TX1 DATA-4	TX1 DATA-4	
9BH	TX1 DATA-5	TX1 DATA-5	TX1 DATA-5	TX1 DATA-5	
9CH	TX1 DATA-6	TX1 DATA-6	TX1 DATA-6	TX1 DATA-6	
9DH	TX1 DATA-7	TX1 DATA-7	TX1 DATA-7	TX1 DATA-7	
9E~9FH	-	-	-	-	
A0H	TX2 Configuration	TX2 Configuration	TX2 Configuration	TX2 Configuration	
A1H	TX2 Information	TX2 Information	TX2 Information	TX2 Information	
A2H	TX2 ID-3	TX2 ID-3	TX2 ID-3	TX2 ID-3	
A3H	TX2 ID-2	TX2 ID-2	TX2 ID-2	TX2 ID-2	
A4H	TX2 ID-1	TX2 ID-1	TX2 ID-1	TX2 ID-1	
A5H	TX2 ID-0	TX2 ID-0	TX2 ID-0	TX2 ID-0	
A6H	TX2 DATA-0	TX2 DATA-0	TX2 DATA-0	TX2 DATA-0	
A7H	TX2 DATA-1	TX2 DATA-1	TX2 DATA-1	TX2 DATA-1	
A8H	TX2 DATA-2	TX2 DATA-2	TX2 DATA-2	TX2 DATA-2	
A9H	TX2 DATA-3	TX2 DATA-3	TX2 DATA-3	TX2 DATA-3	
AAH	TX2 DATA-4	TX2 DATA-4	TX2 DATA-4	TX2 DATA-4	
ABH	TX2 DATA-5	TX2 DATA-5	TX2 DATA-5	TX2 DATA-5	
ACH	TX2 DATA-6	TX2 DATA-6	TX2 DATA-6	TX2 DATA-6	
ADH	TX2 DATA-7	TX2 DATA-7	TX2 DATA-7	TX2 DATA-7	
AE~AFH	-	-	-	-	
B0H	TX3 Configuration	TX3 Configuration	TX3 Configuration	TX3 Configuration	
B1H	TX3 Information	TX3 Information	TX3 Information	TX3 Information	
B2H	TX3 ID-3	TX3 ID-3	TX3 ID-3	TX3 ID-3	
B3H	TX3 ID-2	TX3 ID-2	TX3 ID-2	TX3 ID-2	
B4H	TX3 ID-1	TX3 ID-1	TX3 ID-1	TX3 ID-1	
B5H	TX3 ID-0	TX3 ID-0	TX3 ID-0	TX3 ID-0	
B6H	TX3 DATA-0	TX3 DATA-0	TX3 DATA-0	TX3 DATA-0	
B7H	TX3 DATA-1	TX3 DATA-1	TX3 DATA-1	TX3 DATA-1	
B8H	TX3 DATA-2	TX3 DATA-2	TX3 DATA-2	TX3 DATA-2	
B9H	TX3 DATA-3	TX3 DATA-3	TX3 DATA-3	TX3 DATA-3	
BAH	TX3 DATA-4	TX3 DATA-4	TX3 DATA-4	TX3 DATA-4	
BBH	TX3 DATA-5	TX3 DATA-5	TX3 DATA-5	TX3 DATA-5	
BCH	TX3 DATA-6	TX3 DATA-6	TX3 DATA-6	TX3 DATA-6	
BDH	TX3 DATA-7	TX3 DATA-7	TX3 DATA-7	TX3 DATA-7	
BE~BFH	-	-	-	-	
СОН	TX4 Configuration	TX4 Configuration	TX4 Configuration	TX4 Configuration	
C1H	TX4 Information	TX4 Information	TX4 Information	TX4 Information	
C2H	TX4 ID-3	TX4 ID-3	TX4 ID-3	TX4 ID-3	
СЗН	TX4 ID-2	TX4 ID-2	TX4 ID-2	TX4 ID-2	

Address	s Operating Mode		Reset Mode			
(8-bit)	read	write	read	write		
C4H	TX4 ID-1	TX4 ID-1	TX4 ID-1	TX4 ID-1		
C5H	TX4 ID-0	TX4 ID-0	TX4 ID-0	TX4 ID-0		
C6H	TX4 DATA-0	TX4 DATA-0	TX4 DATA-0	TX4 DATA-0		
C7H	TX4 DATA-1	TX4 DATA-1	TX4 DATA-1	TX4 DATA-1		
C8H	TX4 DATA-2	TX4 DATA-2	TX4 DATA-2	TX4 DATA-2		
C9H	TX4 DATA-3	TX4 DATA-3	TX4 DATA-3	TX4 DATA-3		
CAH	TX4 DATA-4	TX4 DATA-4	TX4 DATA-4	TX4 DATA-4		
СВН	TX4 DATA-5	TX4 DATA-5	TX4 DATA-5	TX4 DATA-5		
ССН	TX4 DATA-6	TX4 DATA-6	TX4 DATA-6	TX4 DATA-6		
CDH	TX4 DATA-7	TX4 DATA-7	TX4 DATA-7	TX4 DATA-7		
CE~CFH	-	-	-	-		
D0H	TX5 Configuration	TX5 Configuration	TX5 Configuration	TX5 Configuration		
D1H	TX5 Information	TX5 Information	TX5 Information	TX5 Information		
D2H	TX5 ID-3	TX5 ID-3	TX5 ID-3	TX5 ID-3		
D3H	TX5 ID-2	TX5 ID-2	TX5 ID-2	TX5 ID-2		
D4H	TX5 ID-1	TX5 ID-1	TX5 ID-1	TX5 ID-1		
D5H	TX5 ID-0	TX5 ID-0	TX5 ID-0	TX5 ID-0		
D6H	TX5 DATA-0	TX5 DATA-0	TX5 DATA-0	TX5 DATA-0		
D7H	TX5 DATA-1	TX5 DATA-1	TX5 DATA-1	TX5 DATA-1		
D8H	TX5 DATA-2	TX5 DATA-2	TX5 DATA-2	TX5 DATA-2		
D9H	TX5 DATA-3	TX5 DATA-3	TX5 DATA-3	TX5 DATA-3		
DAH	TX5 DATA-4	TX5 DATA-4	TX5 DATA-4	TX5 DATA-4		
DBH	TX5 DATA-5	TX5 DATA-5	TX5 DATA-5	TX5 DATA-5		
DCH	TX5 DATA-6	TX5 DATA-6	TX5 DATA-6	TX5 DATA-6		
DDH	TX5 DATA-7	TX5 DATA-7	TX5 DATA-7	TX5 DATA-7		
DE~DFH	-	-	-	-		
E0H	TX6 Configuration	TX6 Configuration	TX6 Configuration	TX6 Configuration		
E1H	TX6 Information	TX6 Information	TX6 Information	TX6 Information		
E2H	TX6 ID-3	TX6 ID-3	TX6 ID-3	TX6 ID-3		
E3H	TX6 ID-2	TX6 ID-2	TX6 ID-2	TX6 ID-2		
E4H	TX6 ID-1	TX6 ID-1	TX6 ID-1	TX6 ID-1		
E5H	TX6 ID-0	TX6 ID-0	TX6 ID-0	TX6 ID-0		
E6H	TX6 DATA-0	TX6 DATA-0	TX6 DATA-0	TX6 DATA-0		
E7H	TX6 DATA-1	TX6 DATA-1	TX6 DATA-1	TX6 DATA-1		
E8H	TX6 DATA-2	TX6 DATA-2	TX6 DATA-2	TX6 DATA-2		
E9H	TX6 DATA-3	TX6 DATA-3	TX6 DATA-3	TX6 DATA-3		
EAH	TX6 DATA-4	TX6 DATA-4	TX6 DATA-4	TX6 DATA-4		
EBH	TX6 DATA-5	TX6 DATA-5	TX6 DATA-5	TX6 DATA-5		
ECH	TX6 DATA-6	TX6 DATA-6	TX6 DATA-6 TX6 DATA-6			

Address	Operatir	ng Mode	Reset	Mode
(8-bit)	read	write	read	write
EDH	TX6 DATA-7	TX6 DATA-7	TX6 DATA-7	TX6 DATA-7
EE~EFH	-	-	-	-
F0H	TX7 Configuration	TX7 Configuration	TX7 Configuration	TX7 Configuration
F1H	TX7 Information	TX7 Information	TX7 Information	TX7 Information
F2H	TX7 ID-3	TX7 ID-3	TX7 ID-3	TX7 ID-3
F3H	TX7 ID-2	TX7 ID-2	TX7 ID-2	TX7 ID-2
F4H	TX7 ID-1	TX7 ID-1	TX7 ID-1	TX7 ID-1
F5H	TX7 ID-0	TX7 ID-0	TX7 ID-0	TX7 ID-0
F6H	TX7 DATA-0	TX7 DATA-0	TX7 DATA-0	TX7 DATA-0
F7H	TX7 DATA-1	TX7 DATA-1	TX7 DATA-1	TX7 DATA-1
F8H	TX7 DATA-2	TX7 DATA-2	TX7 DATA-2	TX7 DATA-2
F9H	TX7 DATA-3	TX7 DATA-3	TX7 DATA-3	TX7 DATA-3
FAH	TX7 DATA-4	TX7 DATA-4	TX7 DATA-4	TX7 DATA-4
FBH	TX7 DATA-5	TX7 DATA-5	TX7 DATA-5	TX7 DATA-5
FCH	TX7 DATA-6	TX7 DATA-6	TX7 DATA-6	TX7 DATA-6
FDH	TX7 DATA-7	TX7 DATA-7	TX7 DATA-7	TX7 DATA-7
FE~FFH	-	-	-	-

1.4 <u>Configuration, Control and Status Registers</u>

CANMODE (0x00) CAN Mode Configuration Register R/W (0x41)

	7	6	5	4	3	2	1	0
RD	TSE	TSL	-	-	ERAR	STE	LOM	RSTM
WR	TSE	TSL	_	-	ERAR	STE	LOM	RSTM

TSE	Transceiver Enable TSE=1 will enable the embedded CAN transceiver TSE=0 will disable the embedded CAN transceiver TSE can be read and written in Peset Mode and is read-only in Operating mode
TSL	Transceiver Slope If TSL=1, transceiver's output buffer at normal speed
	If TSL=0, transceiver's output buffer at low speed
	TSL can be read and written in Reset Mode and is read-only in Operating mode.
ERAR	Error Auto Recovery
	ERAR=1 will allow auto recovery from bus off state
	When this bit is set, auto recovery from Bus Off state to Error Active state is enabled. The auto recovery condition is met when 128 occurrences of bus-free time (11 consecutive 'recessive' bits) is received. When exiting the Bus Off state, TEC and REC are cleared to 0 by hardware if ERAR=1.
	ERAR=0 for disable the auto recovery function.
	If ERAR=0, software must clear REC and TEC to exit of Bus Off state to Error Active state. Please note in the entry of Bus Off state, if ERAR=0, RSTM will be set by hardware, so modification of REC and TEC is allowed. After clearing REC and TEC, the software must also clear RSTM bit to return to normal operation.
STE	Self-Test Mode STM=1 enables self-test mode.

	When STM=1, the only difference from normal operation mode is that a message is treated as successful transmitted by ignoring the ACK error. STM=0 for normal mode operation
LOM	Listen-Only Mode
	LOM=1 will set the CAN controller as listen-only mode
	When LOM=1, CAN controller will work in Listen-Only mode. In this mode, the CAN controller will only perform receiver functions and does not engage any transmission (including ACK signaling). All other functions can be used like in Operating mode. In this mode, the error counters are stopped at the current value and message transmission is not possible. But when detecting bus error, listen-only node will still transmit error frame. LOM=0 for normal mode operation
RSTM	Reset Mode
	RSTM=1 will force the CAN Controller into rest mode regardless of other setting, and will initialize all state machine. It does not affect the register contents. RSTM defaults to 1 after system reset. RSTM is set to 1 by hardware when entering into Bus-Off state if ERAR=0. RSTM must be cleared to 0 to allow the CAN Controller into normal operation. Please note RSTM must be set to 1 first in order to modify TSE, TSL, ERAR, STE, and LOM. The write cycle of RSTM must be preceding the modification cycles of TSE, TSL, ERAR, STE, and LOM.

CANCMD (0x01) CAN Command Register WO (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	-
WR	-	-	OFR	SRR	-	-	CDO	RRB

This register is write-only and reading will return 0x00.

- 9.		
(OFR	Overload Frame Request
		OFR=1 will request transmitting an overload frame. The overload frame is transmitted the first bit time of next expected INTERMISSION. This bit is self-cleared by hardware after the overload frame is transmitted. Since the overload frame will be transmitted regardless of the bus condition, no interrupt is generated at the completion.
·		SRR=1 will result a message be transmitted and received simultaneously. Upon self- reception request command, a message is transmitted and simultaneously received if the acceptance filter is set to the corresponding identifier. This command is used mainly for self- test of the controller. If STE=1 which enable the self-test mode, the transmitter and receiver will ignore ACK error, then transmit and receive can be successful without other nodes present. This command is used mainly for self-test of the controller. This bit is self- cleared by hardware when transmit and receive operations are completed and both transmit and receive interrupts will be generated. SRR only influences transmit buffer 0.
(CDO	Clear Data Overrun CDO=1 will clear data overrun status bit. This command bit is used to clear the data overrun condition indicated by the data overrun status bit. This command bit is self-cleared by hardware.
F	RRB	Release Receive Buffer After reading the contents of the receive buffer at 0X11~0X1D, the CPU can release this memory space in the RXFIFO by setting RRB to logic 1. This may result in another message becoming immediately available within the receive buffer. If there is no other message available, the receive interrupt bit (RI) is reset. This command bit is self-cleared by hardware.

CANSTAT (0x02) CAN Status Register RO (0x08)

	7	6	5	4	3	2	1	0
RD	BOS	ES	TS	RS	TCS	BEPS	DOS	RBS
WR	-	-	-	-	-	-	-	-

This register is read-only, corresponding bits are self-cleared by hardware when the condition is not met.

BOS	Bus Off State Status
	BOS=1 indicates the CAN controller is in the Bus Off State.
	BOS=0 indicates the CAN controller is involved in bus activities.
50	Bus Off state is defined in the error handling state diagram. Possible exit of Bus Off state is by Bus Auto recovery, or by writing a value less than 255 into TEC under reset mode.
E5	Error Status
	defined by the Error Warning Limit register.
	ES=0 indicates warning limits are not exceeded.
	Errors detected during reception or transmission will affect the error counters according to the CAN 2.0B protocol specification. ES is set when at least one of the error counters has reached or exceeded the warning limit setting (EWLR). An error warning interrupt is
	generated, if enabled. The default value of EWLR after hardware reset is 96.
TS	Transmit Status
	TS=1 indicates CAN controller is transmitting a message.
RS	Receive Status
	RS=1 indicates CAN controller is receiving a message.
	If both TS and RS are 0, the CAN controller is idle.
TCS	Transmit Complete Status
	TCS=1 indicates last requested message transmission has been successfully completed
	TCR is cleared to 0 when any transmit request command or SRR command is issued. And
	TCS is set to 1 by hardware when all messages are sent successfully or aborted by setting
	A1. TCR remains to be 0 during the message transmission, and TCS is set to 1 by herdware if all measures are continuous softly and the set of t
REDS	Bus Error Dessive Status
DLFO	BEPS-1 indicates the CAN controller enter Error Passive mode when either Transmit Error
	Counter or Receive Error Counter equal or exceeds 128
	BEPS=0 indicates the CAN controller leave Error Passive mode when return Error Active
	mode or enter Bus off state.
DOS	Data Overrun Status
	DOS=1 indicates that a message was lost because there was not enough memory space for that message in the RXFIFO. And an overrun interrupt is generated with DOI flag set.
	DOS is cleared by setting the Clear Data Overrun (CDO) command bit to logic 1 or reset mode = 1.
RBS	Receive Buffer Status. RBS=1 indicates one or more valid messages are available in
	RXFIFO. RBS is self-cleared by hardware when RXFIFO is empty.

CANINTF (0x03) CAN Interrupt Flag Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	BEI	ALI	EPI	BOI	DOI	EI	TI	RI
WR	-	-	-	-	-	-	-	-

This is a read-only register. All flags are event change triggering so only the change of the condition will cause the interrupt and corresponding flag to be set. All bits are cleared after read except RI.

BEI	Bus Error Interrupt Flag
	include format error, bit stuff error, bit error (when data or CRC transmitted does not match with received), CRC error, and ACK error.
ALI	Arbitration Lost Interrupt
	ALI is set when a message was not sent successfully due to loss of arbitration.
EPI	Error Passive Interrupt
	EPI is set when the CAN controller enters the error passive state, or the CAN controller is already in the error passive state and enters the error active state.
BOI	Bus Off State Interrupt
	BOI is set when the CAN controller in the bus off state or equivalently BOS=1. Since BOI and BOS is 1 whenever in Bus Off state, the software must take care to disable BOIE when entering BOI ISR and then correct the BOS status otherwise the interrupt will occur indefinitely. BOI is cleared when read.
DOI	Data Overrun Interrupt
	DOI is set on a '0-to-1' transition of the data overrun status (DOS). DOI is an interrupt to indicate that a message was lost because there was not enough memory space for that message in the RXFIFO. DOI is cleared when read.
EI	Error Warning Interrupt
	EI is set on when REC or TEC is greater or equal to the CANEWLR setting or equivalently when ES changes from 0 to 1. EI is cleared when read.
TI	Transmit Interrupt
	TI is set whenever the transmit buffer becomes free or equivalently the transmission of the message has finished and TBS changes from 0 to 1. TI is cleared when read.
RI	Receive Interrupt
	RI is set when a new message has been put into the RXFIFO by the CAN controller. RI is cleared when all messages in RXFIFO have been read and released by RRB command.

CANIE (0x04) CAN Interrupt Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	BEIE	ALIE	EPIE	BOIE	DOIE	EIE	TIE	RIE
WR	BEIE	ALIE	EPIE	BOIE	DOIE	EIE	TIE	RIE

The interrupt enable register allows indicating different types of interrupt source. The register appears to the CPU as a read/write memory.

BEIE	Bus Error Interrupt Enable
ALIE	Arbitration Lost Interrupt Enable
EPIE	Error Passive Interrupt Enable
BOIE	Bus Off Interrupt Enable
DOIE	Data Overrun Interrupt Enable
EIE	Error Warning Interrupt Enable
TIE	Transmit Interrupt Enable
RIE	Receive Interrupt Enable

CANBTR0 (0x09) CAN Bus Timing Register 0 R/W (0x00)

	7	6	5	4	3	2	1	0
RD	RD SJW[1-0]				CAN	CS[5-0]		
WR	SJW[1-0]				CAN	CS[5-0]		

CANBR[5-0]	CANBR[5-0] defines the CAN Controller Clock
	The CAN controller clock CANCLK = SYSCLK/2/(CANCS[5-0]+1). This defines the CAN
	Time Quanta from the system clock.
SJW[1-0]	Synchronization Jump Length

This defines the maximum adjustment in CANCLK period units for re-synchronization. The receiver uses the falling edges to determine the physical delay of the network. The synchronization is achieved by inserting a delay compensation segment in the bit time after SYNC SEG and thus also delays the sampling points of the local receiver. SJW[1-0]+1 is used to set the maximum allowed delay segment in CANCLK period.

CANBTR1 (0x0A) CAN Bus Timing Register 1 R/W (0x67)

	7	6	5	4	3	2	1	0	
RD	SAM		TSEG2[2-0]		TSEG1[3-0]				
WR	SAM		TSEG2[2-0]		TSEG1[3-0]				
	SAM TSEG2[2-0] TSEG1[3-0]	SAM=1 betwee determi SAM=0 betwee TSEG2	will use triple n TSEG1 and ned by the ma will use single n TSEG1 and [2-0] defines t [3-0] defines t	-sampling me TSEG2 as sh ajority of the s e-sampling me TSEG2 he bit time co he bit time co	thod. The trip nown in the fol ampled result ethod. The sir mponent 2. T mponent 1. T	ole-sampling m lowing timing s. ngle sampling SEG2 = TSE0 SEG1 = TSE0	nethod uses diagram. Ti occurs at th G2[2-0] + 1 G1[3-0] + 1	three instances ne data is ne time instance	

A CAN bit time is partitioned by CANCLK periods as the following diagram. The first CAN CLK period is used for edge synchronization, and TSEG1 is used for defining the sampling edge. For SAM=0, the sampling edge is the first edge of TSEG2. For SAM=1, the sampling edges are the last two edges of TSEG1, and the first edge of TSEG2. For typical CAN bus design, TSEG1 and TSEG2 is organized for sampling at the last two quanta (period of CANCLK).

CAN baud rate is thus can be calculated as CANCLK/((TSEG2[2-0]+1)+(TSEG1[3-0]+1)+1). Or in terms of SYSCLK, SYSCLK/2/(CANCS[5-0]+1)/{(TSEG2[2-0]+1)+(TSEG1[3-0]+1)+1}. Also note, with re-synchronization, a delay compensation segment is inserted between SYNC SEG and TSEG1. The maximum length of delay compensation segment is limited by SJW[1-0].

CANALC (0x07) CAN Arbitration Lost Capture Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	ALC4	ALC3	ALC2	ALC1	ALC0
WR	-	-	-	-	-	-	-	-

This register is read only and reports the bit locations of a lost arbitration when transmitting a message. The following table defines the corresponding relationship.

		Bits			Decimal	Description
ALC4	ALC3	ALC2	ALC1	ALC0	Value	Description
0	0	0	0	0	0	Arbitration lost in bit ID28
0	0	0	0	1	1	Arbitration lost in bit ID27
0	0	0	1	0	2	Arbitration lost in bit ID26
0	0	0	1	1	3	Arbitration lost in bit ID25
0	0	1	0	0	4	Arbitration lost in bit ID24
0	0	1	0	1	5	Arbitration lost in bit ID23
0	0	1	1	0	6	Arbitration lost in bit ID22
0	0	1	1	1	7	Arbitration lost in bit ID21
0	1	0	0	0	8	Arbitration lost in bit ID20
0	1	0	0	1	9	Arbitration lost in bit ID19
0	1	0	1	0	10	Arbitration lost in bit ID18
0	1	0	1	1	11	Arbitration lost in bit SRTR(Note 1)
0	1	1	0	0	12	Arbitration lost in bit IDE
0	1	1	0	1	13	Arbitration lost in bit ID17(Note 2)
0	1	1	1	0	14	Arbitration lost in bit ID16(Note 2)
0	1	1	1	1	15	Arbitration lost in bit ID15(Note 2)
1	0	0	0	0	16	Arbitration lost in bit ID14(Note 2)
1	0	0	0	1	17	Arbitration lost in bit ID13(Note 2)
1	0	0	1	0	18	Arbitration lost in bit ID12(Note 2)
1	0	0	1	1	19	Arbitration lost in bit ID11(Note 2)
1	0	1	0	0	20	Arbitration lost in bit ID10(Note 2)
1	0	1	0	1	21	Arbitration lost in bit ID9(Note 2)
1	0	1	1	0	22	Arbitration lost in bit ID8(Note 2)
1	0	1	1	1	23	Arbitration lost in bit ID7(Note 2)
1	1	0	0	0	24	Arbitration lost in bit ID6(Note 2)
1	1	0	0	1	25	Arbitration lost in bit ID5(Note 2)
1	1	0	1	0	26	Arbitration lost in bit ID4(Note 2)
1	1	0	1	1	27	Arbitration lost in bit ID3(Note 2)
1	1	1	0	0	28	Arbitration lost in bit ID2(Note 2)
1	1	1	0	1	29	Arbitration lost in bit ID1(Note 2)
1	1	1	1	0	30	Arbitration lost in bit ID0(Note 2)
1	1	1	1	1	31	Arbitration lost in bit RTR(Note 2)

Note 1: Bit RTR for standard frame messages. Note 2: Extended frame messages only.

On arbitration lost, the corresponding arbitration lost interrupt is generated. At the same time, the current bit position of the bit stream processor is captured into the Arbitration Lost Capture register. The content in this register is locked

until the software read out its contents. The capture mechanism is then activated again. The corresponding interrupt flag located in the interrupt register is cleared during the read access to the interrupt flag register. A new arbitration lost interrupt is not possible until the arbitration lost capture register is read out. The following diagram shows the bit locations of the arbitration lost. And an ALC=0x08 is shown as an example, where arbitration lost is detected when outputting a recessive bit but receiving a dominant bit at ID20.

CANECC (0x08) CAN Error Code Capture Register RO (0x00)

Error Code

	7	6	5	4	3	2	1	0
RD	ERRC[1]	ERRC[0]	DIR	SEG[4]	SEG[3]	SEG[2]	SEG[1]	SEG[0]
WR	-	-	-	-	-	-	-	-

This register is read only and cleared after read. This register always keeps the last error status on CAN bus.

ERRC[1-0]

This reflects the error type as defined in the following table

ERCC[1]	ERRC[0]	Descriptions				
0	0	Bit error				
0	1	Form error				
1	0	Stuff error				
1	1	Other type of error				

DIR

Direction of Transfer Error

DIR=1 means errors occurred during reception

DIR=0 means errors occurred during transmission

IS31IO8972 PRELIMINARY

SEG[4-0]

Error Lo	cations				
		SEG[4-0]			Function
0	0	0	1	1	Start of frame
0	0	0	1	0	ID28 to ID21
0	0	1	1	0	ID20 toID18
0	0	1	0	0	Bit SRTR
0	0	1	0	1	Bit IDE
0	0	1	1	1	ID17 to ID13
0	1	1	1	1	ID12 to ID5
0	1	1	1	0	ID4 to ID0
0	1	1	0	0	Bit RTR
0	1	1	0	1	Reserved bit 1
0	1	0	0	1	Reserved bit 0
0	1	0	1	1	Data length code
0	1	0	1	0	Data field
0	1	0	0	0	CRC sequence
1	1	0	0	0	CRC delimiter
1	1	0	0	1	Acknowledge slot
1	1	0	1	1	Acknowledge delimiter
1	1	0	1	0	End of frame
1	0	0	1	0	Intermission
1	0	0	0	1	Active error flag
1	0	1	1	0	Passive error flag
1	0	0	1	1	Tolerate dominant bits (Note)
1	0	1	1	1	Error delimiter
1	1	1	0	0	Overload flag

Note: Any node tolerates up to 7 consecutive 'dominant' bits after send Active Error Flag, Passive Error Flag or Overload Flag.

If a bus error occurs, the corresponding bus error interrupt is generated. At the same time, the current position of the bit stream processor is captured into the Error Code Capture register. The content in this register is locked until the software read out its content. A new bus error capture is prohibited until the capture register is read. The capture mechanism is then activated again. The corresponding interrupt flag located in the interrupt flag register is cleared by reading of the interrupt flag register.

CANEWLR (0x0B) CAN Error Warning Limit Register RW (0x60)

	7	6	5	4	3	2	1	0			
RD	CANEWLR[7-0]										
WR	CANEWLR[7-0]										

This register is modifiable on in reset mode and appears as read-only in normal operating mode. This register set the warning limit for the error counter. When CANREC or CANTEC value exceed CANEWLR value, an error warning interrupt is generated, and the EI flag is set in the interrupt flag register. CANEWLF defaults to 0x60 after hardware reset.

CANREC (0x0C) CAN Receive Error Count Register RW (0x00)

	7	6	5	4	3	2	1	0			
RD	CANREC[7-0]										
WR	CANREC[7-0]										
This ro	This register is modificially on in reset mode and appears as read only in permal operating mode. CANPEC contains										

This register is modifiable on in reset mode and appears as read-only in normal operating mode. CANREC contains the current error count. When the controller enters bus-off state, CANREC is re-initialized as 0, and during bus-off, the writing to CANREC has no effect.

CANTEC (0x0D) CAN Transmit Error Count Register RW (0x00)

	7	6	5	4	3	2	1	0			
RD	CANTEC[7-0]										
WR		CANTEC[7-0]									

This register is modifiable on in reset mode and appears as read-only in normal operating mode. CANTEC contains the current error count, and is initialized as 0 after hardware reset. If a bus-off event occurs, the transmit error counter is initialized to 128 is auto-recovery is not enable. The software can just use the reset mode to allow recovery to the normal error-active state.

1.5 <u>Transmit Buffer</u>

There are eight independent transmit buffers in IS31IO8972. The global layout of each transmit buffer is shown in the table below. The transmit buffer contains one configuration register and 13-bytes of memory space can be in the form of Standard Frame Format (SFF) or Extended Frame Format (EFF) configuration.

Address		Standard Format Frame	Extended Format Frame
80H / 90H / A0H / B0H / C0H / D0H / E0H / F0H	:	TXn Configuration	TXn Configuration
81H / 91H / A1H / B1H / C1H / D1H / E1H / F1H	:	TXn Frame Information	TXn Frame Information
82H / 92H / A2H / B2H / C2H / D2H / E2H / F2H	:	Reserved	TXn Identifier 3
83H / 93H / A3H / B3H / C3H / D3H / E3H / F3H	:	Reserved	TXn Identifier 2
84H / 94H / A4H / B4H / C4H / D4H / E4H / F4H	:	TXn Identifier 1	TXn Identifier 1
85H / 95H / A5H / B5H / C5H / D5H / E5H / F5H	:	TXn Identifier 0	TXn Identifier 0
86H / 96H / A6H / B6H / C6H / D6H / E6H / F6H	:	TXn Data 0	TXn Data 0
87H / 97H / A7H / B7H / C7H / D7H / E7H / F7H	:	TXn Data 1	TXn Data 1
88H / 98H / A8H / B8H / C8H / D8H / E8H / F8H	:	TXn Data 2	TXn Data 2
89H / 99H / A9H / B9H / C9H / D9H / E9H / F9H	:	TXn Data 3	TXn Data 3
8AH / 9AH / AAH / BAH / CAH / DAH / EAH / FAH	:	TXn Data 4	TXn Data 4
8BH / 9BH / ABH / BBH / CBH / DBH / EBH / FBH	:	TXn Data 5	TXn Data 5
8CH / 9CH / ACH / BCH / CCH / DCH / ECH / FCH	:	TXn Data 6	TXn Data 6
8DH / 9DH / ADH / BDH / CDH / DDH / EDH / FDH	:	TXn Data 7	TXn Data 7

The transmit buffer 0 has the highest priority to issue a transmission if bus idle. And the transmit buffer 7 has the lowest priority if more than one transmit requests were set at the same time. Following table is the address location of transmit buffer 0 to transmit buffer 7.

IS31IO8972 PRELIMINARY

Transmit Buffer	Name	Description	Address
	CANT0CFG	CAN Transmit 0 Configuration Register	0x80
Transmit Duffar 0	CANT0FIR	CAN Transmit 0 Frame Information Register	0x81
Transmit Duner 0	CANTX0ID3-0	CAN Transmit 0 Identifier Register 3~0	0x82 ~ 0x85
	CANTX0DATA1-8	CAN Transmit 0 Data Register 1~8	0x86 ~ 0x8D
	CANT1CFG	CAN Transmit 1 Configuration Register	0x90
Transmit Duffar 1	CANT1FIR	CAN Transmit 1 Frame Information Register	0x91
	CANTX1ID3-0	CAN Transmit 1 Identifier Register 3~0	0x92 ~ 0x95
	CANTX1DATA1-8	CAN Transmit 1 Data Register 1~8	0x96 ~ 0x9D
	CANT2CFG	CAN Transmit 2 Configuration Register	0xA0
Transmit Buffer 2	CANT2FIR	CAN Transmit 2 Frame Information Register	0xA1
	CANTX2ID3-0	CAN Transmit 2 Identifier Register 3~0	0xA2 ~ 0xA5
	CANTX2DATA1-8	CAN Transmit 2 Data Register 1~8	0xA6 ~ 0xAD
	CANT3CFG	CAN Transmit 3 Configuration Register	0xB0
Transmit Duffar 2	CANT3FIR	CAN Transmit 3 Frame Information Register	0xB1
	CANTX3ID3-0	CAN Transmit 3 Identifier Register 3~0	0xB2 ~ 0xB5
	CANTX3DATA1-8	CAN Transmit 3 Data Register 1~8	0xB6 ~ 0xBD
	CANT4CFG	CAN Transmit 4 Configuration Register	0xC0
Transmit Duffar 4	CANT4FIR	CAN Transmit 4 Frame Information Register	0xC1
Transmit Duner 4	CANTX4ID3-0	CAN Transmit 4 Identifier Register 3~0	0xC2 ~ 0xC5
	CANTX4DATA1-8	CAN Transmit 4 Data Register 1~8	0xC6 ~ 0xCD
	CANT5CFG	CAN Transmit 5 Configuration Register	0xD0
Transmit Duffar 5	CANT5FIR	CAN Transmit 5 Frame Information Register	0xD1
	CANTX5ID3-0	CAN Transmit 5 Identifier Register 3~0	0xD2 ~ 0xD5
	CANTX5DATA1-8	CAN Transmit 5 Data Register 1~8	0xD6 ~ 0xDD
	CANT6CFG	CAN Transmit 6 Configuration Register	0xE0
Transmit Buffor 6	CANT6FIR	CAN Transmit 6 Frame Information Register	0xE1
	CANTX6ID3-0	CAN Transmit 6 Identifier Register 3~0	0xE2 ~ 0xE5
	CANTX6DATA1-8	CAN Transmit 6 Data Register 1~8	0xE6 ~ 0xED
	CANT7CFG	CAN Transmit 7 Configuration Register	0xF0
Transmit Buffor 7	CANT7FIR	CAN Transmit 7 Frame Information Register	0xF1
	CANTX7ID3-0	CAN Transmit 7 Identifier Register 3~0	0xF2 ~ 0xF5
	CANTX7DATA1-8	CAN Transmit 7 Data Register 1~8	0xF6 ~ 0xFD

CANTnCFR (0x80,0x90,0xA0,0xB0,0xC0,0xD0,0xE0,0xF0) CAN Transmit n Configuration Register RW (0x00)

	7	6	5	4	3	2	1	0			
RD	-	-	-	-	-	ADTSL	ADMOD	ADEN			
WR	-	-	-	-	ADTSL ADMOD		ADEN				
	ADTSL Auto-dispatch Timer Select ADTSL=1 Auto dispatch timer 1 is selected. ADTSL=0 Auto dispatch timer 0 is selected.										
	ADMOD	 Auto-dispatch Mode Select ADMOD=1 indicates the transmit buffer will re-transmit the failed auto-dispatch frame even i a bus error happened. ADMOD=0 indicates the auto-dispatch frame is a single shot transmit and does not re- transmit the failed frame even if a bus error happened. 									
	ADEN Auto-dispatch Enable ADEN=1 active transmit buffer as an auto-dispatch transmitter. If auto-dispatch function is active, the CAN controller will periodically transmit the data stored in the transmit buffer to CAN bus. ADEN=0 indicates the transmit buffer is under normal operation and only the Transmit Request (TR0) command can issue a transmission										
				Dage 25	of 75						

In standard Frame Format (SFF) the identifier consists of 11 bits (ID.28 to ID.18) and in Extended Frame Format (EFF) messages the identifier consists of 29 bits (ID.28 to ID.0). ID.28 is the most significant bit, which is transmitted first on the bus during the arbitration process. The identifier acts as the message's name and is used for bus arbitration and used in a receiver for acceptance filtering. The smaller the binary value of the identifier is, the higher the priority is. This is due to the larger number of leading dominant bits during arbitration. Also please note the R0, R1 and SRR bits in the SFF and EFF are transmitted as R0=R1=0 and SRR=1.

The transmit buffer layout is subdivided into descriptor and data fields where the first byte of the descriptor field is the frame information byte (frame information). It describes the frame format (SFF or EFF), remote or data frame and the data length. Four identifier bytes for both SFF and EFF messages follow. But only the lower 11 bits in the four identifier bytes are valid for SFF and the upper 21 bits are invalid. For EFF, the lower 29 bits in the four identifier bytes are valid and the upper 3 bits are invalid. The data field contains up to eight data bytes.

CANTnFIR (0x81,0x91,0xA1,0xB1,0xC1,0xD1,0xE1,0xF1) CAN Transmit n Frame Information Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	FF	RTR	-	-	DLC[3]	DLC[2]	DLC[1]	DLC[0]
WR	FF	RTR	-	-	DLC[3]	DLC[2]	DLC[1]	DLC[0]
	FF	FF Frame Format FF=1 indicates Extended format frame FF=0 indicates Standard format frame						
	RTR	Remote Frame Transmit Request RTR=1 indicates remote transmission request frame RTR=0 indicates regular data frame						
	DLC[3-0]	Data Byt The num start of a bit being Neverthe CAN con For reas 8 is used specified length.	te Count = DL a remote frame logic 1 (remo eless, the data atrollers start a ons of compat d, only 8 bytes d in DLC. For	C[3-0] the data field transmission te). This force length code r remote frame tibility, no data of data are tra remote frame,	d of a message the data lengt s the number of nust be specif e transmission length code > ansmitted in th DLC[3-0] is u	e is coded by t th code is not o of transmitted/ ied correctly to with the same 8 should be u the data frame sed for indicat	he data length considered due received data a avoid bus err dentifier simu used. If a value with the Data L ing the reques	code. At the e to the RTR bytes to be 0. ors, if two ultaneously. e greater than ength Code ted data

In standard Frame Format (SFF) the identifier consists of 11 bits (ID.28 to ID.18) and in Extended Frame Format (EFF) messages the identifier consists of 29 bits (ID.28 to ID.0). ID.28 is the most significant bit, which is transmitted first on the bus during the arbitration process. The identifier acts as the message's name and is used for bus arbitration and used in a receiver for acceptance filtering. The smaller the binary value of the identifier is, the higher the priority is. This is due to the larger number of leading dominant bits during arbitration. Also please note the R0, R1 and SRR bits in the SFF and EFF are transmitted as R0=R1=0 and SRR=1.

CANTXnID3 (0x82,0x92,0xA2,0xB2,0xC2,0xD2,0xE2,0xF2) CAN Transmit n Identifier Register 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANTXnID3[7-0]								
WR		CANTXnID3[7-0]								

For SFF ID, CANTXnID3[7-0] is not used.

For EFF ID, CANTXnID3[4-0] = ID[28-24]. CANTXnID3[7-5] is don't care.

CANTXnID2 (0x83,0x93,0xA3,0xB3,0xC3,0xD3,0xE3,0xF3) CAN Transmit n Identifier Register 2 RW (0x00)

	7	6	5	4	3	2	1	0
RD	CANTX0ID2[7-0]							
WR		CANTX0ID2[7-0]						

For SFF ID, CANTXnID2[7-0] is not used. For EFF ID, CANTXnID2[7-0] = ID[23-16].

CANTXnID1 (0x84,0x94,0xA4,0xB4,0xC4,0xD4,0xE4,0xF4) CAN Transmit n Identifier Register 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANTXnID1[7-0]								
WR	CANTXnID1[7-0]								

For SFF ID, CANTXnID1[2-0] = ID[28-26]. CANTXnID1[7-3] is not used.

For EFF ID, CANTXnID1[7-0] = ID[15-8].

CANTXnID0 (0x85,0x95,0xA5,0xB5,0xC5,0xD5,0xE5,0xF5) CAN Transmit n Identifier Register 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANTXnID0[7-0]								
WR		CANTXnID0[7-0]							

For SFF ID, CANTXnID0[7-0] = ID[25-18]

For EFF ID, CANTXnID0[7-0] = ID[7-0].

The data field registers of transmit buffer is mapping to the address following CANTXnID0. The number of transferred data bytes is defined by the data length code. The first bit transmitted is the most significant bit of data byte 1 at the address of "CANTXnID + 1".

CANTXnDATA1 (0x86,0x96,0xA6,0xB6,0xC6,0xD6,0xE6,0xF6) CAN Transmit n DATA Register 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANTXnDATA1[7-0]							
WR		CANTXnDATA1[7-0]							

CANTXnDATA2 (0x87,0x97,0xA7,0xB7,0xC7,0xD7,0xE7,0xF7) CAN Transmit n DATA Register 2 RW (0x00)

	7	6	5	4	3	2	1	0
RD		CANTXnDATA2[7-0]						
WR		CANTXnDATA2[7-0]						

CANTXnDATA3 (0x88,0x98,0xA8,0xB8,0xC8,0xD8,0xE8,0xF8) CAN Transmit n DATA Register 3 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANTXnDATA3[7-0]							
WR		CANTXnDATA3[7-0]							

CANTXnDATA4 (0x89,0x99,0xA9,0xB9,0xC9,0xD9,0xE9,0xF9) CAN Transmit n DATA Register 4 RW (0x00)

	7	6	5	4	3	2	1	0
RD	CANTXnDATA4[7-0]							
WR		CANTXnDATA4[7-0]						

WR

CANT	XnDATA5 (0x	8A,0x9A,0xA	A,0xBA,0xCA	,0xDA,0xEA,	0xFA) CAN Ti	ansmit n DA	TA Register 5	RW (0x00)	
	7	6	5	4	3	2	1	0	
RD				CANTXnD	OATA5[7-0]				
WR				CANTXnD	OATA5[7-0]				
CANT	CANTXnDATA6 (0x8B,0x9B,0xAB,0xBB,0xCB,0xDB,0xEB,0xFB) CAN Transmit n DATA Register 6 RW (0x00)								
	7	6	5	4	3	2	1	0	
RD	CANTXnDATA6[7-0]								
WR	CANTXnDATA6[7-0]								
CANT	XnDATA7 (0x	8C,0x9C,0xA	C,0xBC,0xCC	,0xDC,0xEC,	0xFC) CAN T	ransmit n DA	TA Register 7	′ RW (0x00)	
	7	6	5	4	3	2	1	0	
RD				CANTXnD	DATA7[7-0]				
WR				CANTXnD	OATA7[7-0]				
CANT	XnDATA8 (0x	8D,0x9D,0xA	D,0xBD,0xCD),0xDD,0xED,	0xFD) CAN T	ransmit n DA	TA Register 8	8 RW (0x00)	
	7	6	5	4	3	2	1	0	
RD		•		CANTXnD	ATA8[7-0]				

The dispatch function allows the CAN controller to send out periodic dispatch frame without software interactions. Each transmit buffer can be configured as a dispatcher by setting ADEN. The layout of this dispatch transmit buffer is the same as the transmit buffer consisting of a transmit frame information register, four transmit ID registers, and 8 transmit data registers. The interval of the dispatch can be defined by either dispatch timers, CANDOTR, or by CAND1TR. All these register can be written only in reset mode. The Transmitter 0 (Dispatcher 0) has the highest transmit priority, and the Transmitter 1 (Dispatcher 1) has the second transmit priority, etc. And the Transmitter 7 (Dispatcher 7) has the lowest transmit priority.

CANTXnDATA8[7-0]

CAND0TR0 (0x0E) CAN Dispatch Interval Timer 0 Low Byte Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	CANDOTR[7:0]							
WR	CAND0TR[7:0]							

This register can be modified only in reset mode. CAND0TR[7-0] Dispatch Timer 0 bit 7 to 0

CAND0TR1 (0x0F) CAN Dispatch Interval Timer 0 High Byte Register RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CAND0TR[15-8]								
WR		CANDOTR[15-8]							

This register can be modified only in reset mode.

CAND0TR[15-8] Dispatch Timer 0 bit 15 to 8

The interval defined by CAND0TR is "(CAND0TR[15-0] + 16) * 100 * BT", where BT is the bit time of CAN bus. Because the length of Dispatch Interval Timer 0 Register is 16, the maximal programmable time period of the dispatch timer is $(2^{16}+16) * 100 * (1 / 1Mbps) = 6.55sec$ under 1Mbps bit rate. Dispatch interval timer 0 is disabled when CAND0TR[15-0] = 0x0000.

IS31IO8972 PRELIMINARY

CAND1TR0 (0x1E) CAN Dispatch Interval Timer 1 Low Byte Register RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CAND1TR[7:0]								
WR		CAND1TR[7:0]							

This register can be modified only in reset mode.

CAND1TR[7-0] Dispatch Timer 1 bit 7 to 0

CAND1TR1 (0x1F) CAN Dispatch Interval Timer 1 High Byte Register RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CAND1TR[15-8]								
WR	CAND1TR[15-8]								

This register can be modified only in reset mode.

CAND0TR[15-8] Dispatch Timer 1 bit 15 to 8

The interval defined by CAND1TR is "(CAND1TR[15-0] + 16) * 100 * BT", where BT is the bit time of CAN bus. Because the length of Dispatch Interval Timer 1 Register is 16, the maximal programmable time period of the dispatch timer is $(2^{16}+16) * 100 * (1 / 1Mbps) = 6.55sec$ under 1Mbps bit rate. Dispatch interval timer 1 is disabled when CAND1TR[15-0] = 0x0000.

CANTCR0/CANTSR0 (0x05) CAN Transmit Request/Status 0 Register RW (0x0F)

	7	6	5	4	3	2	1	0					
RD	TBB3	TBB2	TBB1	TBB0	TCS3	TCS2	TCS1	TCS0					
WR	TAB3	TAB2	TAB1	TAB0	TR3	TR2	TR1	TR0					
The C	he CAN Transmit Request 0 register (CANTCR0) and the CAN Transmit Status 0 register (CANTSR0) share the												
address 0x05. The CANTCR0 is a write-only register and the CANTSR0 is a read-only register.													
	TBB3	Transmi	t Buffer 3 Bus	y Status (read	l-only)								
		TBB3=1	indicates a m	essage in the	transmit buffer	3 is either wa	liting for transr	nission or in					
		progress	s of being trans	smitted and th	e MCU canno	access that the	ransmit butter.	I his dit will					
			indicates the	transmit buffe	sinission is in p	o programme	d a now moss						
	TBB2	TBB3=0	t Buffor 2 Bus		l only)	e programme	J a new messa	age by MCO.					
	TDD2	TRR2-1	indicates a m	essage in the	transmit huffe	2 is either wa	aiting for transr	mission or in					
		progress	s of being tran	smitted and th	e MCU cannot	access that t	ransmit buffer.	This bit will					
		be set w	hen TR2=1 or	dispatch trans	smission is in p	progress.							
		TBB2=0	indicates the	transmit buffe	r 2 is valid to b	e programme	d a new messa	age by MCU.					
	TBB1	Transmi	t Buffer 1 Bus	y Status (read	l-only)								
		TBB1=1	indicates a m	essage in the	transmit buffe	1 is either wa	aiting for transr	nission or in					
		progress	s of being tran	smitted and th	e MCU cannot	access that the	ransmit buffer.	This bit will					
		be set w	hen TR1=1 or	dispatch trans	smission is in p	progress.							
	TDDO	IBB1=0	Indicates the	transmit buffe	r 1 is valid to b	e programme	d a new messa	age by MCU.					
	I BB0		t Butter 0 Bus	y Status (read	I-ONIY)		iting for trans						
			indicates a m	essage in the	e MCLL cannot	OIS either wa	liting for transf	This bit will					
		be set w	be set when TR0=1 or dispatch transmission is in progress										
		TBB0=0	indicates the	transmit buffe	r 0 is valid to b	e programme	d a new messa	age by MCU.					
	TCS3	Transmi	t Complete of	transmit buffe	r 3 (read-only)							
		TCS3=1	when the last	requested or	dispatch trans	mission has b	een successfu	lly completed					
		or aborte	ed.	-	-								
		TCS3=0	indicates the	transmission o	of transmit buff	er 3 is in prog	ress.						
	TCS2	Transmi	t Complete of	transmit buffe	r 2 (read-only))							

	TCS2=1 when the last requested or dispatch transmission has been successfully completed
	TCS2=0 indicates the transmission of transmit buffer 2 is in progress
TCS1	Transmit Complete of transmit buffer 1 (read-only)
	TCS1=1 when the last requested or dispatch transmission has been successfully completed or aborted.
	TCS1=0 indicates the transmission of transmit buffer 1 is in progress.
TCS0	Transmit Complete of transmit buffer 0 (read-only)
	TCS0=1 when the last requested or dispatch transmission has been successfully completed or aborted.
	TCS0=0 indicates the transmission of transmit buffer 0 is in progress.
TAB3	Abort Transmitting Command of transmit buffer 3 (write-only)
	TAB3=1 will abort the pending transmission request issued from transmit buffer 3. TAB3 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB3 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB3 is self-cleared by hardware.
TAB2	Abort Transmitting Command of transmit buffer 2 (write-only)
	TAB2=1 will abort the pending transmission request issued from transmit buffer 2. TAB2 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB2 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB2 is self-cleared by hardware.
TAB1	Abort Transmitting Command of transmit buffer 1 (write-only)
	TAB1=1 will abort the pending transmission request issued from transmit buffer 1. TAB1 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB1 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB1 is self-cleared by hardware.
TAB0	Abort Transmitting Command of transmit buffer 0 (write-only)
	TAB0=1 will abort the pending transmission request issued from transmit buffer 0. TAB0 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB0 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB0 is self-cleared by hardware.
TR3	Transmit Request Command of transmit buffer 3 (write-only)
	TR3=1 to request the CAN controller transmits the message stored in the transmit buffer 3. A transmitting message only can be cancelled by setting TAB3. User can check TBB3 and TCS3 to know this transmission is in progress or completed.
TR2	Transmit Request Command of transmit buffer 2 (write-only)
	TR2=1 to request the CAN controller transmits the message stored in the transmit buffer 2. A transmitting message only can be cancelled by setting TAB2. User can check TBB2 and TCS2 to know this transmission is in progress or completed.
TR1	Transmit Request Command of transmit buffer 1 (write-only)
	TR1=1 to request the CAN controller transmits the message stored in the transmit buffer 1.
	A transmitting message only can be cancelled by setting TAB1. User can check TBB1 and TCS1 to know this transmission is in progress or completed.
TR0	Transmit Request Command of transmit buffer 0 (write-only)
	TR0=1 to request the CAN controller transmits the message stored in the transmit buffer 0. A transmitting message only can be cancelled by setting TAB0. User can check TBB0 and TCS0 to know this transmission is in progress or completed.

CANTCR1/CANTSR1 (0x06) CAN Transmit Request/Status 1 Register RW (0x0F)

	7	6	5	4	3	2	1	0
RD	TBB7	TBB6	TBB5	TBB4	TCS7	TCS6	TCS5	TCS4
WR	TAB7	TAB6	TAB5	TAB4	TR7	TR6	TR5	TR4

The CAN Transmit Request 1 register (CANTCR1) and the CAN Transmit Status 1 register (CANTSR1) share the address 0x06. The CANTCR1 is a write-only register and the CANTSR1 is a read-only register.

TBB7	Transmit Buffer 7 Busy Status (read-only)
	TBB7=1 indicates a message in the transmit buffer 7 is either waiting for transmission or in
	progress of being transmitted and the MCU cannot access that transmit buffer. This bit will
	be set when TR7=1 or dispatch transmission is in progress.
	TBB7=0 indicates the transmit buffer 7 is valid to be programmed a new message by MCU.
TBB6	Transmit Buffer 6 Busy Status (read-only)
	TBB6=1 indicates a message in the transmit buffer 6 is either waiting for transmission or in
	progress of being transmitted and the MCU cannot access that transmit buffer. This bit will
	be set when TR6=1 or dispatch transmission is in progress.
	TBB6=0 indicates the transmit buffer 6 is valid to be programmed a new message by MCU.
TBB5	Transmit Buffer 5 Busy Status (read-only)
	TBB5=1 indicates a message in the transmit buffer 5 is either waiting for transmission or in
	progress of being transmitted and the MCU cannot access that transmit buffer. This bit will
	be set when TR5=1 or dispatch transmission is in progress.
	TBB5=0 indicates the transmit buffer 5 is valid to be programmed a new message by MCU.
TBB4	Transmit Buffer 4 Busy Status (read-only)
	TBB4=1 indicates a message in the transmit buffer 4 is either waiting for transmission or in
	progress of being transmitted and the MCU cannot access that transmit buffer. This bit will
	be set when TR4=1 or dispatch transmission is in progress.
	TBB4=0 indicates the transmit buffer 4 is valid to be programmed a new message by MCU.
TCS7	Transmit Complete of transmit buffer 7 (read-only)
	TCS7=1 when the last requested or dispatch transmission has been successfully completed
	or aborted.
	TCS7=0 indicates the transmission of transmit buffer 7 is in progress.
TCS6	Transmit Complete of transmit buffer 6 (read-only)
	TCS6=1 when the last requested or dispatch transmission has been successfully completed
	or aborted.
	TCS6=0 indicates the transmission of transmit buffer 6 is in progress.
TCS5	Transmit Complete of transmit buffer 5 (read-only)
	TCS5=1 when the last requested or dispatch transmission has been successfully completed
	or aborted.
T 00/	ICS5=0 indicates the transmission of transmit buffer 5 is in progress.
TCS4	I ransmit Complete of transmit buffer 4 (read-only)
	TCS4=1 when the last requested or dispatch transmission has been successfully completed
	or aborted.
T 4 D 7	I CS4=0 indicates the transmission of transmit buffer 4 is in progress.
IAB7	Abort Transmitting Command of transmit buffer 7 (write-only)
	AB7=1 will abort the pending transmission request issued from transmit buffer 7. TAB7
	does not stop an on-going message transmission, but the next transmission attempt will be
	in ACK error) TAB7 is self-cleared by bardware
TARE	Abort Transmitting Command of transmit buffer 6 (write-only)
TADO	TAB6-1 will abort the pending transmission request issued from transmit buffer 6. TAB6
	does not stop an on-going message transmission, but the next transmission attempt will be
	aborted. TAB6 should be used only for aborting a message transmission with errors (mostly
	in ACK error). TAB6 is self-cleared by hardware.
TAB5	Abort Transmitting Command of transmit buffer 5 (write-only)

	TAB5=1 will abort the pending transmission request issued from transmit buffer 5. TAB5 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB5 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB5 is self-cleared by hardware.
TAB4	Abort Transmitting Command of transmit buffer 4 (write-only)
	TAB4=1 will abort the pending transmission request issued from transmit buffer 4. TAB4 does not stop an on-going message transmission, but the next transmission attempt will be aborted. TAB4 should be used only for aborting a message transmission with errors (mostly in ACK error). TAB4 is self-cleared by hardware.
TR7	Transmit Request Command of transmit buffer 7 (write-only)
	TR7=1 to request the CAN controller transmits the message stored in the transmit buffer 7. A transmitting message only can be cancelled by setting TAB7. User can check TBB7 and TCS7 to know this transmission is in progress or completed.
TR6	Transmit Request Command of transmit buffer 6 (write-only)
	TR6=1 to request the CAN controller transmits the message stored in the transmit buffer 6. A transmitting message only can be cancelled by setting TAB6. User can check TBB6 and TCS6 to know this transmission is in progress or completed.
TR5	Transmit Request Command of transmit buffer 5 (write-only)
	TR5=1 to request the CAN controller transmits the message stored in the transmit buffer 5. A transmitting message only can be cancelled by setting TAB5. User can check TBB5 and TCS5 to know this transmission is in progress or completed.
TR4	Transmit Request Command of transmit buffer 4 (write-only) TR4=1 to request the CAN controller transmits the message stored in the transmit buffer 4. A transmitting message only can be cancelled by setting TAB4. User can check TBB4 and TCS4 to know this transmission is in progress or completed.

1.6 <u>Receive FIFO</u>

In IS31IO8972, there is a 1024-byte data FIFO for receive frame. The maximal byte number of a receive frame is 14, including one Receive Frame Filter Number (RFFNR), one Receive Frame Information Register (RFIFR), four Receive Frame Identifier Registers (RFIDR), and maximal eight Receive Frame Data Registers (RFDTR). The minimum valid receive frame in the Receive FIFO is 73 in the same time without overload error. MCU can read the earliest received frame from the Receive Frame Buffer located from address 0x10 to 0x1D. After reading the contents of the receive buffer, MCU must release this memory space in the RX FIFO by setting the Release Receive Buffer bit in Command Register. After releasing the current receive buffer, the data of next frame will be popped to address 0x10 to 0x1D. All registers in Receive Frame Buffer are read only.

The following diagram shows the frame arrangement.

LOCATION	DESCRIPTION	BIT [7-0]					
0x10	ACP FILTER	-	-		-	ACPEIL [3-0]	
0x10	RX INFO	IDE	RTR	0	0	DI C[3-0]	
0x12		0	0	0	•	ID[28-24]	
0x12	ID2	•	Ŭ	•	ID[2;	3-16]	
0x14	ID1				ID[1	5-8]	
0x15	ID0				ID[7	7-0]	
0x16	DATA1				DATA	1[7-0]	
0x17	DATA2				DATA	2[7-0]	
0x18	DATA3				DATA	3[7-0]	
0x19	DATA4				DATA	4[7-0]	
0x1A	DATA5				DATA	5[7-0]	
0x1B	DATA6	DATA6[7-0]					
0x1C	DATA7	DATA7[7-0]					
0x1D	DATA8				DATA	8[7-0]	

CANACPFIL (0x10) CAN Receive Acceptance Filter Number Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	0	1	0	0	ACPFIL[3]	ACPFIL[2]	ACPFIL[1]	ACPFIL[0]
WR	-	-	-	-	-	-	-	-

ACPFIL[3-0]

] CAN Receive Acceptance Filter Number

ACPFIL[3-0] contains the Acceptance Filter number that matches with the received frame. CANACPFIL[7-4] are reserved bits and the constant "0100" always be read.

CANRXINFO (0x11) CAN Receive Information Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	IDE	RTR	0	0	DLC[3]	DLC[2]	DLC[1]	DLC[0]
WR	-	-	-	-	-	-	-	-

CANRXINFO contains the information of the received frame, includes IDE, RTR, and DLC[3-0]. IDE bit determines whether the frame is SFF (IDE=0) or EFF (IDE=1). For SFF, RXID[28-11] will be all 0 and only RXID[10-0] is meaningful. The received data bytes depend on DLC code. For unspecified data bytes and reserved bytes, the contents are not guaranteed. Please note the R0, R1 and SRR bits along with CRC field are not stored. IDE Frame Format

	IDE=1: Extended format frame with 29-bit ID valid
	IDE=0: Standard format frame with 11-bit ID valid
RTR	Remote Frame Transmission
	RTR=1: A remote frame transmission was received and the data length code (DLC) is not considered. This forces the number of transmitted/received data bytes to be 0.
	RTR=0: A data frame was received and the data length code (DLC) must be specified correctly.
DLC[3-0]	Data Length Code
	Specify the byte number of the received data frame.
	DataByteCount = 8 X DLC[3] + 4 X DLC[2] + 2 X DLC[1] + DLC[0]
	For reasons of compatibility, no DLC > 8 should be used. If a value >8 is selected, only 8 bytes are transmitted and received in the data frame.

CANRXID3 (0x12) CAN Receive ID3 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	0	0	0	RXID[28]	RXID[27]	RXID[26]	RXID[25]	RXID[24]
WR	-	-	-	-	-	-	-	-

For SFF ID, CANRXID3[7-0] is not used.

For EFF ID, CANRXID3[4-0] = RXID[28-24]. CANRXID3[7-5] is don't care.

CANRXID2 (0x13) CAN Receive ID2 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	RXID[23]	RXID[22]	RXID[21]	RXID[20]	RXID[19]	RXID[18]	RXID[17]	RXID[16]
WR	-	-	-	-	-	-	-	-

For SFF ID, CANRXID2[7-0] is not used.

For EFF ID, CANRXID2[7-0] = RXID[23-16].

CANRXID1 (0x14) CAN Receive ID1 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	RXID[15]	RXID[14]	RXID[13]	RXID[12]	RXID[11]	RXID[10]	RXID[9]	RXID[8]
WR	-	-	-	-	-	-	-	-

For SFF ID, CANRXID1[2-0] = RXID[10-8]. CANRXID1[7-3] is don't care.

For EFF ID, CANRXID1[7-0] = RXID[15-8].

CANRXID0 (0x15) CAN Receive ID0 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	RXID[7]	RXID[6]	RXID[5]	RXID[4]	RXID[3]	RXID[2]	RXID[1]	RXID[0]
WR	-	-	-	-	-	-	-	-

For SFF ID, CANRXID0[7-0] = RXID[7-0].

For EFF ID, CANRXID0[7-0] = RXID[7-0].

Data field registers of the receive buffer is mapping to address 16H to 1DH. The number of transferred data bytes is defined by the data length code (DLC[3-0]) an only the number of bytes stored in the Receive Frame Data Field Register is valid. The first bit received is the most significant bit of data byte 0 stored at address 16H.

CANRXDTA0 (0x16) CAN Receive Data 0 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD				CANRX	DATA0[7-0]			
WR					-			
CANR	XDTA1 (0x17) CAN Receiv	ve Data 1 Reg	ister RO (0x	:00)			
	7	6	5	4	3	2	1	0
RD				CANRX	DATA1[7-0]			
WR					-			
CANR	XDTA2 (0x18) CAN Receiv	ve Data 2 Reg	ister RO (0x	:00)			
	7	6	5	4	3	2	1	0
RD				CANRX	DATA2[7-0]			
WR					-			
CANR	XDTA3 (0x19) CAN Receiv	ve Data 3 Reg	ister RO (0x	:00)			
	7	6	5	4	3	2	1	0
RD				CANRX	DATA3[7-0]			
WR					-			
CANR	XDTA4 (0x1A	A) CAN Receiv	ve Data 4 Reg	ister RO (0)	(00)			
	7	6	5	4	3	2	1	0
RD				CANRX	DATA4[7-0]			
WR					-			
CANR	XDTA5 (0x1E	3) CAN Receiv	ve Data 5 Reg	ister RO (0)	(00)			
	7	6	5	4	3	2	1	0
			•				·	
RD				CANKA	DATA5[7-0]			

CANRXDTA6 (0x1C) CAN Receive Data 6 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	CANRXDATA6[7-0]							
WR	_							

CANRXDTA7 (0x1D) CAN Receive Data 7 Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	CANRXDATA7[7-0]							
WR	-							

CANRXFCNT (0x7A) CAN Receive Frame Count Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	CANRXFCNT[7-0]							
WR	-							
	CANRXFCN	T CANRX	FCNT[7-0] ind	icates the num	ber of all unre	ad received fr	ame in the rec	eive buffer.

FCNT CANRXFCNT[7-0] indicates the number of all unread received frame in the receive buffer. This register will be increased by one when receive a valid frame and will be decreased by one when setting the Release Receive Buffer (RRB) bit to logic 1. When the register reaches zero means the receive buffer is empty.

1.7 <u>Acceptance Filter</u>

There are 12 Acceptance Filters and 8 Filter Masks for matching with the ID of a message on the bus. Each filter can be enabled or disabled independently. Each acceptance filter is consisted of 4 ID registers and corresponding ID Mask register to mask the match comparing the specific bit in the ID. The layout of the ID registers corresponding to forming ID28 to ID1 for SFF and EFF is the same as Transmit ID registers. Please note the ID registers only defines the ID and do not define the frame type, therefore it is possible a value in the ID registers corresponding to two possible matches for SFF and EFF separately. This is especially true since the ID bit ordering for SFF and EFF is opposite, the user should check if unintended accepted ID is possible for another frame type. For the Filter's Mask register, when mask bit is 0 the corresponding bit is compared for matching, and when the mask bit is 1 the corresponding bit is ignored. All Acceptance Filter ID registers and Mask register can only be modified in the reset mode, and appear as read-only in normal operating mode.

CANFTERL (0x70) CAN ID Filter Low Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	FTER7	FTER6	FTER5	FTER4	FTER3	FTER2	FTER1	FTER0
WR	FTER7	FTER6	FTER5	FTER4	FTER3	FTER2	FTER1	FTER0

There are 12 Acceptance Filters for message ID matching. This register controls the enabling of each filter, multiple filters can be enabled. This register can be modified only in reset mode and appears as read-only in normal operating mode.

FTER7	Acceptance Filter 7 Enable
	FTER7=1 enables Acceptance Filter 7
FTER6	Acceptance Filter 6 Enable
	FTER6=1 enables Acceptance Filter 6
FTER5	Acceptance Filter 5 Enable
	FTER1=5 enables Acceptance Filter 5
FTER4	Acceptance Filter 4 Enable
	FTER4=1 enables Acceptance Filter 4
FTER3	Acceptance Filter 3 Enable
	FTER3=1 enables Acceptance Filter 3
FTER2	Acceptance Filter 2 Enable
	FTER2=1 enables Acceptance Filter 2
FTER1	Acceptance Filter 1 Enable

	FTER1=1 enables Acceptance Filter 1
FTER0	Acceptance Filter 0 Enable
	FTER0=1 enables Acceptance Filter 0

CANFTERH (0x71) CAN ID Filter High Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	FTER11	FTER10	FTER9	FTER8
WR	-	-	-	-	FTER11	FTER10	FTER9	FTER8

FTER11	Acceptance Filter 11 Enable
	FTER11=1 enables Acceptance Filter 11
FTER10	Acceptance Filter 10 Enable
	FTER10=1 enables Acceptance Filter 10
FTER9	Acceptance Filter 9 Enable
	FTER9=1 enables Acceptance Filter 9
FTER8	Acceptance Filter 8 Enable
	FTER8=1 enables Acceptance Filter 8

In IS31IO8972, there are 12 ID Acceptance Filters and 8 Filter Masks, but not all Receive Filter Acceptances can be enabled at the same time. The minimal time period between a valid ID and a CRC delimiter is 20-bit time and Filter Controller must compare all enabled Filters during the period. So the maximal number of available Receive Filter is limited by the frequency of the system clock, CAN's bit rate and data format. Following table lists the maximal number of available Receive Filter with different operation conditions.

	Frequency of System Clock / Frequency of CAN bit rate				
	8	10	12	16	
Standard Format (11-bit ID)	11	12	12	12	
Extended Format (29-bit ID)	7	9	11	12	

CANRFIE (0x72) CAN Acceptance Filter Match Interrupt Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	RFIE7	RFIE6	RFIE5	RFIE4	RFIE3	RFIE2	RFIE1	RFIE0
WR	RFIE7	RFIE6	RFIE5	RFIE4	RFIE3	RFIE2	RFIE1	RFIE0

RFIE7	RFIE7=1 Enable Acceptance Filter 7 match interrupt
	RFIE7=0 Disable Acceptance Filter 7 match interrupt
RFIE6	RFIE6=1 Enable Acceptance Filter 6 match interrupt
	RFIE6=0 Disable Acceptance Filter 6 match interrupt
RFIE5	RFIE5=1 Enable Acceptance Filter 5 match interrupt
	RFIE5=0 Disable Acceptance Filter 5 match interrupt
RFIE4	RFIE4=1 Enable Acceptance Filter 4 match interrupt
	RFIE4=0 Disable Acceptance Filter 4 match interrupt
RFIE3	RFIE3=1 Enable Acceptance Filter 3 match interrupt
	RFIE3=0 Disable Acceptance Filter 3 match interrupt
RFIE2	RFIE2=1 Enable Acceptance Filter 2 match interrupt
	RFIE2=0 Disable Acceptance Filter 2 match interrupt
RFIE1	RFIE1=1 Enable Acceptance Filter 1 match interrupt
	RFIE1=0 Disable Acceptance Filter 1 match interrupt
RFIE0	RFIE0=1 Enable Acceptance Filter 0 match interrupt
	RFIE0=0 Disable Acceptance Filter 0 match interrupt

CANEXIE (0x73) CAN Extra Interrupt Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	WKUPIE	PHYIE	ECCIE	THMIE	RFIE11	RFIE10	RFIE9	RFIE8
WR	WKUPIE	PHYIE	ECCIE	THMIE	RFIE11	RFIE10	RFIE9	RFIE8

WKUPIE	WKUPIE=1 Enable external wakeup interrupt. When detect an external wakeup signal, IS31IO8972 wakeup from stop mode and notice CPU by pulling low the INTn pin. WKUPIE=0 Disable external wakeup interrupt
PHYIE	PHYIE=1 Enable transceiver error interrupt. When detect an error state on the transceiver, IS31IO8972 will notice CPU by pulling low the INTn pin.
ECCIE	ECCIE=1 Enable SRAM ECC correction interrupt. When the content of SRAM was corrected by built-in Hamming code, IS31IO8972 will notice CPU by pulling low the INTn pin.
THMIE	THMIE=1 Enable the transceiver's built-in thermal reset interrupt. When the transceiver is shut-down because of the thermal reset, IS31IO8972 will notice CPU by pulling low the INTn pin.
RFIE11	RFIE11=1 Enable Acceptance Filter 11 match interrupt RFIE11=0 Disable Acceptance Filter 11 match interrupt
RFIE10	RFIE10=1 Enable Acceptance Filter 10 match interrupt RFIE10=0 Disable Acceptance Filter 10 match interrupt
RFIE9	RFIE9=1 Enable Acceptance Filter 9 match interrupt RFIE9=0 Disable Acceptance Filter 9 match interrupt
RFIE8	RFIE8=1 Enable Acceptance Filter 8 match interrupt RFIE8=0 Disable Acceptance Filter 8 match interrupt

CANRFIF (0x74) CAN Acceptance Filter Match Interrupt Flag Register RO (0x00)

	7	6	5	4	3	2	1	0
RD	RFIF7	RFIF6	RFIF5	RFIF4	RFIF3	RFIF2	RFIF1	RFIF0
WR	-	-	-	-	-	-	-	-

This is a read-only register. All flags are event change triggering while the received ID match the Acceptance Filter. All bits are cleared after read.

RFIF7	RFIF7 is set when FTER7=1 and the ID of received frame matches Acceptance Filter 7. RFIF7 is cleared after read.
RFIF6	RFIF6 is set when FTER6=1 and the ID of received frame matches Acceptance Filter 6. RFIF6 is cleared after read.
RFIF5	RFIF5 is set when FTER5=1 and the ID of received frame matches Acceptance Filter 5. RFIF5 is cleared after read.
RFIF4	RFIF4 is set when FTER4=1 and the ID of received frame matches Acceptance Filter 4. RFIF4 is cleared after read.
RFIF3	RFIF3 is set when FTER3=1 and the ID of received frame matches Acceptance Filter 3. RFIF3 is cleared after read.
RFIF2	RFIF2 is set when FTER2=1 and the ID of received frame matches Acceptance Filter 2. RFIF2 is cleared after read.
RFIF1	RFIF1 is set when FTER1=1 and the ID of received frame matches Acceptance Filter 1. RFIF1 is cleared after read.
RFIF0	RFIF0 is set when FTER0=1 and the ID of received frame matches Acceptance Filter 0. RFIF0 is cleared after read.

CANEXIF (0x75) CAN Extra Interrupt Flag Register RO (0x00)

	7	6	5	4	3	2	1	0					
RD	WKUPIF	PHYIF	ECCIF	THMIF	RFIF11	RFIF10	RFIF9	RFIF8					
WR	-	-	-	-	-	-	-	-					
	WKUPIF	External WKUPIF mode ar after rea	External Wakeup Interrupt Flag WKUPIF is set when detect an external wakeup signal; IS31IO8972 will wake up from stop mode and notice CPU by pulling low the INTn pin if WKUPIE was set. WKUPIF is cleared										
	PHYIF	Transce PHYIF is pulling lo TRANFA bus and	Transceiver Error Interrupt Flag PHYIF is set when detect an error state on the transceiver; IS31IO8972 will notice CPU by pulling low the INTn pin if PHYIE was set. The fault status can be read from the TRANFAULT register. PHYIF is cleared only when all faults have been banished from CAN bus and all bits in TRANFAULT are cleared by software										
	ECCIF	ECCIF is IS31IO8 after rea	s set when the 972 will notice d.	content of SF CPU by pullir	RAM was corre	cted by built-in n pin if ECCIE	n Hamming co was set. ECC	de; IF is cleared					
	THMIF	THMIF is or recov INTn pin	s set when the ered from ther if THMIE was	transceiver is mal shut-down set. THMIF is	s shut-down du n state. IS31IC s cleared after	ie to the built-i)8972 will notic read.	n thermal rese ce CPU by pul	t happened ling low the					
	RFIF11	RFIF11 RFIF11	is set when F1 is cleared afte	ER11=1 and r read.	the ID of recei	ved frame mat	tches Accepta	nce Filter 11.					
	RFIF10	RFIF10 RFIF10	is set when F1 is cleared afte	ER10=1 and rread.	the ID of recei	ved frame mat	tches Accepta	nce Filter 10.					
	RFIF9	RFIF9 is set when FTER9=1 and the ID of received frame matches Acceptance Filter 9. RFIF9 is cleared after read.											
	RFIF8	RFIF8 is RFIF8 is	set when FTE cleared after	ER8=1 and the read.	e ID of receive	d frame match	es Acceptance	e Filter 8.					

All Acceptance Filter registers can be modified only in reset mode and appears as read-only in normal operating mode.

CANAFID03 (0x20) Acceptance Filter 0 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	C/	ANMKSEL0[2-	-0]	CANFID03[4-0]						
WR	CANMKSEL0[2-0]				(CANFID03[4-0]			
	CANMKSEL	0 Accepta Each ac accepta Mask by CANMK CANMK CANMK CANMK CANMK CANMK CANMK CANMK	nce Filter 0's N tive Acceptant nce receive ID CANMKSEL0 SEL0[2-0] = 0 SEL0[2-0] = 0 SEL0[2-0] = 0 SEL0[2-0] = 0 SEL0[2-0] = 1 SEL0[2-0] = 1 SEL0[2-0] = 1 SEL0[2-0] = 1	Mask Selection ce Filter must range. The A 0[2-0]. 00: Acceptanc 10: Acceptanc 11: Acceptanc 00: Acceptanc 01: Acceptanc 11: Acceptanc 10: Acceptanc 11: Acceptanc	n cooperate with cceptance Filte e Filter Mask (e Filter Mask (an Acceptance er can choose 0 is selected 1 is selected 2 is selected 3 is selected 4 is selected 5 is selected 6 is selected 7 is selected	ce Filter Mask one Acceptar	to decide the ce Filter		

CANAFID02 (0x21) Acceptance Filter 0 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID02[7-0]								
WR				CANFIE	002[7-0]				

CANAFID01 (0x22) Acceptance Filter 0 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID01[7-0]								
WR		CANFID01[7-0]							

CANAFID00 (0x23) Acceptance Filter 0 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID00[7-0]								
WR		CANFID00[7-0]							

CANAFID13 (0x24) Acceptance Filter 1 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	C/	ANMKSEL1[2-	·0]	CANFID13[4-0]						
WR	C/	ANMKSEL1[2-	·0]		(CANFID13[4-0]			

CANMKSEL1 Acceptance Filter 1's Mask Selection Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL1[2-0]. CANMKSEL1[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL1[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL1[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL1[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL1[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL1[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL1[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL1[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID12 (0x25) Acceptance Filter 1 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFID12[7-0]								
WR		CANFID12[7-0]								

CANAFID11 (0x26) Acceptance Filter 1 ID Byte 1 RW (0x00)

	· · ·								
	7	6	5	4	3	2	1	0	
RD		CANFID11[7-0]							
WR		CANFID11[7-0]							

CANAFID10 (0x27) Acceptance Filter 1 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	010[7-0]			
WR				CANFIE	010[7-0]			

CANAFID23 (0x28) Acceptance Filter 2 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0			
RD	C	ANMKSEL2[2-	·0]		CANFID23[4-0]						
WR	C	ANMKSEL2[2-	·0]		(CANFID23[4-0]				

CANMKSEL2 Acceptance Filter 2's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the
Masks by CANMKSEL2[2-0].
CANMKSEL2[2-0] = 000: Acceptance Filter Mask 0 is selected
CANMKSEL2[2-0] = 001: Acceptance Filter Mask 1 is selected
CANMKSEL2[2-0] = 010: Acceptance Filter Mask 2 is selected
CANMKSEL2[2-0] = 011: Acceptance Filter Mask 3 is selected
CANMKSEL2[2-0] = 100: Acceptance Filter Mask 4 is selected
CANMKSEL2[2-0] = 101: Acceptance Filter Mask 5 is selected
CANMKSEL2[2-0] = 110: Acceptance Filter Mask 6 is selected
CANMKSEL2[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID22 (0x29) Acceptance Filter 2 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0				
RD				CANFIE	022[7-0]							
WR	CANFID22[7-0]											
~												

CANAFID21 (0x2A) Acceptance Filter 2 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	021[7-0]			
WR	CANFID21[7-0]							

CANAFID20 (0x2B) Acceptance Filter 2 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	020[7-0]			
WR	CANFID20[7-0]							

CANAFID33 (0x2C) Acceptance Filter 3 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	C/	ANMKSEL3[2-	0]	CANFID33[4-0]						
WR	C	ANMKSEL3[2-	0]		(CANFID33[4-0]			

CANMKSEL3 Acceptance Filter 3's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL3[2-0]. CANMKSEL3[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL3[2-0] = 001: Acceptance Filter Mask 1 is selected

CANMKSEL3[2-0] = 010: Acceptance Filter Mask 2 is selected

CANMKSEL3[2-0] = 011: Acceptance Filter Mask 3 is selected

CANMKSEL3[2-0] = 100: Acceptance Filter Mask 4 is selected

CANMKSEL3[2-0] = 101: Acceptance Filter Mask 5 is selected

CANMKSEL3[2-0] = 110: Acceptance Filter Mask 6 is selected CANMKSEL3[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID32 (0x2D) Acceptance Filter 3 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	032[7-0]			
WR				CANFIE	032[7-0]			

CANAFID31 (0x2E) Acceptance Filter 3 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	031[7-0]			
WR				CANFIE	031[7-0]			

CANAFID30 (0x2F) Acceptance Filter 3 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	030[7-0]			
WR				CANFIE	30[7-0]			

CANAFID43 (0x30) Acceptance Filter 4 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	C/	ANMKSEL4[2-	0]	CANFID43[4-0]						
WR	C/	ANMKSEL4[2-	0]		(CANFID43[4-0]			

CANMKSEL4 Acceptance Filter 4's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL4[2-0].

CANMKSEL4[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL4[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL4[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL4[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL4[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL4[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL4[2-0] = 110: Acceptance Filter Mask 5 is selected CANMKSEL4[2-0] = 111: Acceptance Filter Mask 6 is selected CANMKSEL4[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID42 (0x31) Acceptance Filter 4 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFIE	042[7-0]			
WR				CANFI	042[7-0]			

CANAFID41 (0x32) Acceptance Filter 4 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID41[7-0]								
WR	CANFID41[7-0]								

CANAFID40 (0x33) Acceptance Filter 4 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID40[7-0]								
WR	CANFID40[7-0]								

CANAFID53 (0x34) Acceptance Filter 5 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0
RD	C/	ANMKSEL5[2-	·0]		(CANFID53[4-0)]	
WR	C/	CANMKSEL5[2-0]			(CANFID53[4-0]	
	CANMKSEL	5 Accepta Each ac accepta Masks b CANMK CANMK CANMK CANMK CANMK CANMK CANMK CANMK	nce Filter 5's I tive Acceptant nce receive ID y CANMKSEL SEL5[2-0] = 0 SEL5[2-0] = 0 SEL5[2-0] = 0 SEL5[2-0] = 1 SEL5[2-0] = 1 SEL5[2-0] = 1 SEL5[2-0] = 1	Mask Selection ce Filter must range. The A .5[2-0]. 00: Acceptanc 10: Acceptanc 11: Acceptanc 00: Acceptanc 01: Acceptanc 11: Acceptanc 11: Acceptanc 11: Acceptanc	cooperate with cceptance Filt e Filter Mask e Filter Mask	a an Acceptance er can choose 0 is selected 1 is selected 2 is selected 3 is selected 4 is selected 5 is selected 6 is selected 7 is selected	ce Filter Mask one Acceptar	to decide the ace Filter

CANAFID52 (0x35) Acceptance Filter 5 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID52[7-0]								
WR	CANFID52[7-0]								

CANAFID51 (0x36) Acceptance Filter 5 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID51[7-0]								
WR	CANFID51[7-0]								

CANAFID50 (0x37) Acceptance Filter 5 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFID50[7-0]								
WR		CANFID50[7-0]								

CANAFID63 (0x38) Acceptance Filter 6 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0
RD	C/	ANMKSEL6[2-	0]		(CANFID63[4-0]	
WR	CANMKSEL6[2-0]				(CANFID63[4-0]	

CANMKSEL6 Acceptance Filter 6's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL6[2-0].
CANMKSEL6[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL6[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL6[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL6[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL6[2-0] = 101: Acceptance Filter Mask 4 is selected CANMKSEL6[2-0] = 100: Acceptance Filter Mask 5 is selected CANMKSEL6[2-0] = 101: Acceptance Filter Mask 4 is selected CANMKSEL6[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL6[2-0] = 111: Acceptance Filter Mask 6 is selected CANMKSEL6[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID62 (0x39) Acceptance Filter 6 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID62[7-0]								
WR	CANFID62[7-0]								

CANAFID61 (0x3A) Acceptance Filter 6 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID61[7-0]								
WR		CANFID61[7-0]							

CANAFID60 (0x3B) Acceptance Filter 6 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID60[7-0]								
WR	CANFID60[7-0]								

CANAFID73 (0x3C) Acceptance Filter 7 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	C/	ANMKSEL7[2-	0]		CANFID73[4-0]				
WR	C/	ANMKSEL7[2-	0]		(CANFID73[4-0]		

CANMKSEL7 Acceptance Filter 7's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL7[2-0].

CANMKSEL7[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL7[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL7[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL7[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL7[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL7[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL7[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL7[2-0] = 110: Acceptance Filter Mask 6 is selected CANMKSEL7[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID72 (0x3D) Acceptance Filter 7 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID72[7-0]							
WR	CANFID72[7-0]								

CANAFID71 (0x3E) Acceptance Filter 7 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID71[7-0]							
WR	CANFID71[7-0]								

CANAFID70 (0x3F) Acceptance Filter 7 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID70[7-0]							
WR		CANFID70[7-0]							

CANAFID83 (0x40) Acceptance Filter 8 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	CANMKSEL8[2-0]			CANFID83[4-0]						
WR	CANMKSEL8[2-0]				CANFID83[4-0]					
	CANMKSEL	8 Accepta Each ac accepta	nce Filter 8's I tive Acceptant nce receive ID	Mask Selection ce Filter must range. The A	n cooperate with cceptance Filt	n an Acceptan er can choose	ce Filter Mask one Acceptan	to decide the ice Filter		

Masks by CANMKSEL8[2-0]. CANMKSEL8[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL8[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL8[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL8[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL8[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL8[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL8[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL8[2-0] = 110: Acceptance Filter Mask 6 is selected CANMKSEL8[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID82 (0x41) Acceptance Filter 8 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID82[7-0]							
WR	CANFID82[7-0]								

CANAFID81 (0x42) Acceptance Filter 8 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0
RD	CANFID81[7-0]							
WR	CANFID81[7-0]							

CANAFID80 (0x43) Acceptance Filter 8 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID80[7-0]							
WR		CANFID80[7-0]							

CANAFID93 (0x44) Acceptance Filter 9 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0
RD	C/	ANMKSEL9[2·	-0]		CANFID93[4-0]			
WR	C	ANMKSEL9[2·	-0]	CANFID93[4-0]				

CANMKSEL9 Acceptance Filter 9's Mask Selection Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL9[2-0]. CANMKSEL9[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL9[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL9[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL9[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL9[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL9[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL9[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL9[2-0] = 111: Acceptance Filter Mask 6 is selected CANMKSEL9[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID92 (0x45) Acceptance Filter 9 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0	
RD		CANFID92[7-0]							
WR		CANFID92[7-0]							

CANAFID91 (0x46) Acceptance Filter 9 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0	
RD	CANFID91[7-0]								
WR	CANFID91[7-0]								

CANAFID90 (0x47) Acceptance Filter 9 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0
RD	CANFID90[7-0]							
WR	CANFID90[7-0]							

CANAFID103 (0x48) Acceptance Filter 10 ID Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD	CA	NMKSEL10[2	-0]		CANFID103[4-0]					
WR	CA	NMKSEL10[2	-0]		C	ANFID103[4-0)]			

CANMKSEL10 Acceptance Filter 10's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL10[2-0].

CANMKSEL10[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL10[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL10[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL10[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL10[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL10[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL10[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL10[2-0] = 111: Acceptance Filter Mask 6 is selected CANMKSEL10[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID102 (0x49) Acceptance Filter 10 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0
RD				CANFID	102[7-0]			
WR				CANFID	102[7-0]			
CANA	FID101 (0x4 <i>A</i>	A) Acceptance	e Filter 10 ID E	Byte 1 RW (0>	(00)			
	7	6	5	4	3	2	1	0
RD				CANFID	101[7-0]			
WR				CANFID	101[7-0]			
CANA	FID100 (0x4E	B) Acceptance	e Filter 10 ID E	Byte 0 RW (0)	(00)			
	7	6	5	4	3	2	1	0
RD				CANFID	100[7-0]			
WR				CANFID	100[7-0]			
CANA	FID113 (0x40	C) Acceptance	e Filter 11 ID E	Byte 3 RW (0)	(00)			
	7	6	5	4	3	2	1	0

RD	CANMKSEL11[2-0]	CANFID113[4-0]
WR	CANMKSEL11[2-0]	CANFID113[4-0]

CANMKSEL11 Acceptance Filter 11's Mask Selection

Each active Acceptance Filter must cooperate with an Acceptance Filter Mask to decide the acceptance receive ID range. The Acceptance Filter can choose one Acceptance Filter Masks by CANMKSEL11[2-0]. CANMKSEL11[2-0] = 000: Acceptance Filter Mask 0 is selected CANMKSEL11[2-0] = 001: Acceptance Filter Mask 1 is selected CANMKSEL11[2-0] = 010: Acceptance Filter Mask 2 is selected CANMKSEL11[2-0] = 011: Acceptance Filter Mask 3 is selected CANMKSEL11[2-0] = 101: Acceptance Filter Mask 4 is selected CANMKSEL11[2-0] = 100: Acceptance Filter Mask 4 is selected CANMKSEL11[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL11[2-0] = 101: Acceptance Filter Mask 5 is selected CANMKSEL11[2-0] = 111: Acceptance Filter Mask 6 is selected CANMKSEL11[2-0] = 111: Acceptance Filter Mask 7 is selected

CANAFID112 (0x4D) Acceptance Filter 11 ID Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFID112[7-0]								
WR				CANFID	112[7-0]					

CANAFID111 (0x4E) Acceptance Filter 11 ID Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFID111[7-0]								
WR				CANFID	111[7-0]					

CANAFID110 (0x4F) Acceptance Filter 11 ID Byte 0 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFID110[7-0]								
WR				CANFID	110[7-0]					

CANAFMK03 (0x50) Acceptance Filter Mask 0 Byte 3 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFMK03[7-0]								
WR		CANFMK03[7-0]								

CANAFID02 (0x51) Acceptance Filter Mask 0 Byte 2 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFMK02[7-0]								
WR				CANFM	K02[7-0]					

CANAFMK01 (0x52) Acceptance Filter Mask 0 Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CANFMK01[7-0]								
WR				CANFM	K01[7-0]					

Revision 0A 10/01/2018

CANA	FMK00 (0x53) Acceptance	e Filter Mask () Byte 0 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K00[7-0]			
WR				CANFM	K00[7-0]			
CANA	FMK13 (0x54) Acceptance	e Filter Mask '	1 Byte 3 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K13[7-0]			
WR				CANFM	K13[7-0]			
CANA	FID12 (0x55)	Acceptance	Filter Mask 1	Byte 2 RW (0	x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K12[7-0]			
WR				CANFM	K12[7-0]			
CANA	FMK11 (0x56) Acceptance	e Filter Mask '	1 Byte 1 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K11[7-0]			
WR				CANFM	K11[7-0]			
CANA	FMK10 (0x57) Acceptance	e Filter Mask '	1 Byte 0 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K10[7-0]			
WR				CANFM	K10[7-0]			
CANA	FMK23 (0x58) Acceptance	e Filter Mask 2	2 Byte 3 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K23[7-0]			
WR				CANFM	K23[7-0]			
CANA	FID22 (0x59)	Acceptance	Filter Mask 2	Byte 2 RW (0	x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K22[7-0]			
WR				CANFM	K22[7-0]			
CANA	FMK21 (0x5A	Acceptanc	e Filter Mask	2 Byte 1 RW ((0x00)			
	7	6	5	4	3	2	1	0
RD				CANFM	K21[7-0]			
WR				CANFM	K21[7-0]			
CANA	FMK20 (0x5E	B) Acceptanc	e Filter Mask	2 Byte 0 RW ((0x00)			
	7	6	5	4	3	2	1	0
RD			-	CANFM	K20[7-0]	-		•
WR				CANFM	K20[7-0]			

CANA	FMK33 (0x50	C) Acceptane	ce Filter Mask	3 Byte 3 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K33[7-0]			
WR				CANF	/K33[7-0]			
CANA	FID32 (0x5D)) Acceptance	e Filter Mask 3	Byte 2 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K32[7-0]			
WR				CANF	/K32[7-0]			
CANA	FMK31 (0x58	E) Acceptand	ce Filter Mask	3 Byte 1 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD		1		CANF	/K31[7-0]			_
WR				CANF	/K31[7-0]			
CANA	FMK30 (0x5F	-) Acceptand	ce Filter Mask	3 Byte 0 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD		1		CANF	/K30[7-0]			_
WR				CANF	/K30[7-0]			
CANA	FMK43 (0x60)) Acceptand	e Filter Mask	4 Byte 3 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K43[7-0]			
WR				CANF	/K43[7-0]			
CANA	FID42 (0x61)	Acceptance	Filter Mask 4	Byte 2 RW (0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K42[7-0]			
WR				CANF	/K42[7-0]			
CANA	FMK41 (0x62	2) Acceptance	e Filter Mask	4 Byte 1 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K41[7-0]			
WR				CANF	/K41[7-0]			
CANA	FMK40 (0x63	B) Acceptance	e Filter Mask	4 Byte 0 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K40[7-0]			
WR				CANF	/K40[7-0]			
CANA	FMK53 (0x64	1) Acceptanc	e Filter Mask	5 Byte 3 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K53[7-0]		<u>.</u>	<u> </u>
WR				CANF	/K53[7-0]			

Revision 0A 10/01/2018

CANAF	ID52 (0x65) Acceptance	Filter Mask 5	Byte 2 RW (0)x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/IK52[7-0]			
WR				CANF	/IK52[7-0]			
CANAF	MK51 (0x6	6) Acceptanc	e Filter Mask	5 Byte 1 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K51[7-0]			
WR				CANF	/K51[7-0]			
CANAF	MK50 (0x6	7) Acceptanc	e Filter Mask	5 Byte 0 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K50[7-0]	1	1	
WR				CANF	/K50[7-0]			
CANAF	MK63 (0x6	8) Acceptanc	e Filter Mask	6 Byte 3 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K63[7-0]	1	1	_
WR				CANF	/K63[7-0]			
CANAF	ID62 (0x69) Acceptance	e Filter Mask 6	Byte 2 RW (()x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K62[7-0]			
WR				CANF	/K62[7-0]			
CANAF	MK61 (0x6	A) Acceptand	ce Filter Mask	6 Byte 1 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K61[7-0]	1	1	_
WR				CANF	/K61[7-0]			
CANAF	MK60 (0x6	B) Acceptand	ce Filter Mask	6 Byte 0 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K60[7-0]		1	
WR				CANF	/K60[7-0]			
CANAF	MK73 (0x6	C) Acceptan	ce Filter Mask	7 Byte 3 RW	(0x00)			
	7	6	5	4	3	2	1	0
RD				CANF	/K73[7-0]			
WR				CANF	/K73[7-0]			
CANAF	ID72 (0x6D) Acceptance	e Filter 7 Mask	Byte 2 RW (0x00)			
	7	6	5	4	3	2	1	0
RD			<u> </u>	CANF	/K72[7-0]	1	1	
WR				CANF	 /K72[7-0]			

CANAFMK71 (0x6E) Acceptance Filter Mask 7 Byte 1 RW (0x00)

	7	6	5	4	3	2	1	0				
RD	CANFMK71[7-0]											
WR		CANFMK71[7-0]										
CANA	CANAFMK70 (0x6F) Acceptance Filter Mask 7 Byte 0 RW (0x00)											

	7	6	5	4	3	2	1	0		
RD		CANFMK70[7-0]								
WR				CANFM	K70[7-0]					

1.8 <u>Basic Operations</u>

The basic function of CAN controller will be discussed in this section. The following chapter will describe the advanced functions of CAN controller. To communicate with other nodes on the CAN-bus, CAN controller must be configured properly as described.

1.8.1 <u>Setting of Operation Mode</u>

Some registers are writable only in Reset mode such as Bus Timing registers, so we must write these registers in the Reset mode and the CAN controller must quit Reset mode when these registers are configured properly to make the controller work.

1.8.2 Baud Rate Setting

The baud rate in the CAN-bus is determined by the two registers CANBTR0 and CANBTR1. The following example explains how to calculate the baud rate of 500K assuming system clock is 16MHz, and CANBTR0=01h CANBTR1=14h. Then the CANCLK is SYSCLK/2/(CANCS[5-0]+1) = SYSCLK/4 = 4MHz. Thus each time quanta is 250nsec. Then the one CAN bit time BT is $(1 + (TSEG1+1) + (TSEG2+1)) \times 250$ nsec = $(1 + 2 + 5) \times 250$ nsec = 2usec. As the result the CAN bus baud rate is 500Kbps.

1.8.3 Setting of Acceptance Filter

With the help of the acceptance filter, the CAN controller can receive proper frames from CAN-bus only when the identifier bits of the received frames are equal to the predefined ones within the acceptance filter registers. The acceptance filter is defined by the Acceptance Filter Code Registers (ACR) and the Acceptance Filter Mask Code Registers (MCR). The bit patterns of frames to be received are defined within the Acceptance Filter Code registers. The corresponding mask code registers allow define certain bit positions to be 'don't care'. After hardware reset, all the Acceptance Filter Code registers and Acceptance Filter Mask Code registers are cleared.

In IS31IO8972, there are 12 groups of acceptance filter and 8 groups of acceptance filter mask. We must enable at least one group of filter with a corresponding acceptance filter mask previously. Each group of filter has 4-byte Acceptance Filter Code and 4-byte Acceptance Filter Mask Code. We take Acceptance Filter 0 in CAN as an example: the address of the Acceptance Filter Code 3 is 0x20, the address of the Acceptance Filter Code 2 is 0x21 and so on. If the Acceptance Filter 0 selects Acceptance Filter Mask 1 as its corresponding mask code by writing a '001' into CANMKSEL0[2-0], the corresponding Acceptance Filter Mask is located at address 0x54 to 0x57. When received message is standard format frame, the lower 11 bits of the Acceptance Filter Code and the Acceptance Filter Code are valid. When received message is extended format frame, the lower 29 bits of the Acceptance Filter Code and the Acceptance Filter Code are valid.

Extended frame: if an extended format frame is received, the complete identifier including the RTR bit is used for acceptance filtering. For a successful reception of a message, all single bit comparisons have to signal acceptance. It should be noted that the 3 most significant bits of ACR are Acceptance Filter Mask selection and the 3 most significant bits of MCR3 are not used.

Standard frame: if a standard format frame message is received, the completely identifier are used for acceptance filtering. For a successful reception of a frame, all single bit comparisons have to signal acceptance. The 3 most significant bits of ACR are Acceptance Filter Mask selection. The ACR3[4-0], MCR3, ACR2, MCR2 and the 5 most significant bits of ACR1 and MCR1 are not used. In order to be compatible with future products, these unused bits in Mask Code registers should be programmed to be 'don't care' by setting these bits to logic 1.

1.8.4 <u>Transmitting a Frame</u>

You must write transmit buffer to send a frame to CAN-bus, then set the transmit request bit to logic 1. The controller will wait for the bus idle and sends the frame to the bus. For example, CAN Controller will send a standard format frame to CAN-bus from the transmit buffer 0. Frame identifier is 0x001, the data have a length of 8 and the data are 11h, 22h, 33h, 44h, 55h, 66h, 77h and 88h.The program written in Keil-C is as follows:

- 1. Write reg(0x80,0x00); // disable Auto-dispatch function
- 2. Write_reg(0x81,0x08); // write the frame information register, FF=0, RTR=0, DLC=8
- 3. Write_reg(0x82,0x00); // write the TX ID3 Register
- 4. Write_reg(0x83,0x00); // write the TX ID2 Register
- 5. Write_reg(0x84,0x00); // write the TX ID1 Register
- 6. Write_reg(0x85,0x01); // write the TX ID0 Register
- 7. Write_reg(0x86,0x11); // write the TX data 1 Register
- 8. Write_reg(0x87,0x22); // write the TX data 2 Register
- 9. Write_reg(0x88,0x33); // write the TX data 3 Register
- 10. Write_reg(0x89,0x44); // write the TX data 4 Register
- 11. Write_reg(0x8A,0x55); // write the TX data 5 Register
- 12. Write_reg(0x8B,0x66); // write the TX data 6 Register
- 13. Write_reg(0x8C,0x77); // write the TX data 7 Register
- 14. Write_reg(0x8D,0x88); // write the TX data 8 Register
- 15. Write_reg(0x05,0x01); // write the transmit request bit

Note that the prototype of the function Write_reg is: Void Write reg(unsigned int address, unsigned char value);

1.8.5 <u>Receiving a Frame</u>

When CAN controller receives a frame successfully and the receive interrupt is enabled, the receive interrupt bit will be set logic 1. MCU is informed by the receive interrupt and reads the data in the receive buffer out, then releases the receive buffer. Please pay special attention here that the data must be read before releasing receive buffer, because the value in the receive buffer has changed after releasing receive buffer.

1.8.6 Dispatching

The CAN controller can transmit data periodically to CAN-bus to report its status. To realize this function, we must configure the dispatch time registers properly. IS31IO8972 has two Dispatch Interval Timers, D0TR0 and D0TR1. Both D0TR0 and D0TR1 are 16-bit dispatch timers. A non-zero value must be programed into the choice dispatch interval timer to enable the timer. The 16 dispatch time bits control the period that the controller transmits data to

CAN-bus and the dispatch period is calculate as follows: Provided the bit period is $t_b = \frac{1}{BaudRate}$ and the value of

the 16 dispatch time bits is "A", then the dispatch time is "100 x (A+16) x t_b " second. In other words, the CAN controller transmits a message from the active TX buffers to the CAN-bus every "100 x (A+16) x t_b " second. When dispatch time bits are all set to logic 0, the dispatch function is disabled. If Auto-Dispatch Mode Select (ADMOD) is cleared, when bus error in dispatching a frame, it can transmit an error frame and can't transmit the failed frame again.

1.9 Interrupt

In IS31IO8972, the INTn output pin source from CAN Interrupt Flag (CANINTF), CAN Acceptance Filter Match Interrupt Flag (CANRFIF), and CAN Extra Interrupt Flag (CANEXIF). Each interrupt flag bit has a corresponding interrupt enable bit. The function of INTn pin is described as the figurate below.

1.10 Self Test Mode

The self test mode is of the CAN control is the same normal operation mode except when the message is sent, the ACK error is ignored. This allows the software to initiate a "self reception request" command. Upon this command, a message is transmitted to the bus and will be treated as successfully transmitted without check the ACK flag. The transmitted message is also received by the sending CAN controller if the ID field matches with the acceptance filter. The software can then check the correctness of the received message and perform loop-back test. The loop-back can be done by connecting CANH and CANL with a terminal resistor, or can be done through the external transceiver on the actual CAN bus, or setting the Self-Loop Mode. When loop back from the bus, the CAN bus needs to be properly terminated to ensure correct electrical level for normal bus operation.

The following figurate illustrates the internal connection when CAN is in Self-Loop Mode. Under Self-loop Mode, the internal signal 'CAN_RX' disconnects from the embedded Transceiver and is short with 'CAN_TX', Self-Loop test usually goes on in self test mode (STE) with self receive request (SRR) command to verify the controller whether it works. When going on self-loop test, the controller can't receive data from CAN-bus.

To enable CAN Self-Loop Test Mode, MCU must unlock CAN Test Locker Register by writing an "A6H" into the least four bits of CAN Test Locker Register at address 0x7E. Then enable the Self-Loop Test Mode by setting the CAN Self-Loop Test Enable bit at CAN Test Enable Register (address 0x7F).

CANPTLOCK (0x7F) CAN Protection Locker Register WO (0x00)

	7	6	5	4	3	2	1	0
RD	-							
WR	CANPTLOCK[7-0]							

CAN Protection Locker Register is a security register to avoid an erroneous register programming. It emulates a ticket that must be purchased before modifying a critical register. MCU must program an "0xA6" into the Protection Locker Register at address 0x7F to unlock the security before to program the protected registers, including CAN Test Enable Register (0x7E), Regulator Configuration Register (0x77) and I/O Control Register (0x78). Protection Locker Register does not limit the read access of those protected registers. The security bit will be locked again once MCU programs any data into any address. This register is a write only register.

CANPTLOCK

CAN Protection Locker Register

Write '0xA6' into CANPTLOCK to unlock the security

Write a not '0xA6' value into CANPTLOCK or write other addresses to lock the security again.

CANTESTEN (0x7E) CAN Test Enable Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	CANFTXD		-	CANMBIST	-	CANSLPE
WR	CANRST	-	CANFTXD		-	CANMBIST	-	CANSLPE

CAN Test Enable Register includes four test signals and is protected by CANPTLOCK. Before program CANTESTEN, the CANPTCLOCK must be unlocked by writing '0xA6'. In order to avoid the fault, only one of 'CANRST', 'CANDTE', 'CANMBIST' and 'CANSLPE' bit can be set at the same time.

CANRST	CAN Reset
	Write 1 to generate a reset pulse to reinitiate whole chip. This bit is cleared automatically by hardware. CANRST is a write-only bit.
CANFTXD	Force CAN dominant status
	CAMFTXD=1: IS31IO8972 drives the 'dominant' bit on CANH and CANL until this bit is cleared by software. This test function is only valid when both TSE and RSTM were set.
CANMBIST	CAN SRAM Built-in Self Test Enable
	This bit is reserved for the engineer test. User must always keep CANMBIST=0 when program CANTESTEN register.
CANSLPE	CAN Self-Loop Test Mode
	CANSLPE=1: Enable CAN Self-Loop Test Mode
	CANSLPE=0: Disable CAN Self-Loop Test Mode

2. <u>I/O CONFIGURATION</u>

In IS31IO8972, there are two general-purpose input/output pads with multi-function. When SPI interface was selected (MSEL0 = 1), "SPI_CSn/GPIO 0" is SPI chip select input with low active. When deselect SPI interface (MSEL = 0), "SPI_CSn/GPIO 0" is a general-purpose input/output pin and controlled by GPIO Control Register at address 0x71.

In the initial setting, "CLKOUT/GPIO 1" is a clock output pin. The clock output pin is provided to the system designers for use as the main system clock or as a clock input for other devices. The CLKOUT has an internal prescaler that can divide the frequency of XOSC1 by 1, 2, 4, and 8. The CLKOUT function is controlled and the prescaler is selected via the CLKOUT Control Register at address 0x78. IS31I08972 enters stop mode by setting Stop Mode bit. Before turn off all clock sources, IS31I08972 will drive sixteen additional clock cycles on "CLKOUT/GPIO 1" pin when the Stop Mode bit is set. In stop mode, the idle state of "CLKOUT/GPIO 1" is low. Users can select "CLKOUT/GPIO 1" as a general-purpose input/output pin by setting the CLKOUT Enable to zero. When CLKOUT Enable is clear, GPIO Control Register will take over "CLKOUT/GPIO 1" pin.

"SPI_CSn/GPIO 0" and "CLKOUT/GPIO 1" are also used to decide the least two ID address of slave I²C. During the power-on initial state, IS31I08972 captures the wire level of "SPI_CSn/GPIO 0" and "CLKOUT/GPIO 1" at the rising edge of RSTN input as I²C's ID-0 and ID-1. System designers must pull-up or pull-down these two pins as the I²C ID[1:0] in system boards.

The following figure illustrates the internal selection of "SPI_CSn/GPIO 0" and "CLKOUT/GPIO 1" pins.

I/O Selection of SPI_CSn/GPIO0 and CLKOUT/GPIO 1

2.1 <u>Registers Description</u>

IOCTL (0x78) I/O Control Register RW (0x86)

	7	6	5	4	3	2	1	0
RD	CKOEN	CKOSEL[1]	CKOSEL[0]	-	OSCSEL	XOSCEN	IOSCEN	STOP
WR	CKOEN	CKOSEL[1]	CKOSEL[0]	-	OSCSEL	XOSCEN	IOSCEN	STOP

I/O Control Register is a Protection Locker Register protected register. MUC must unlock the security bit by programming an "A6H" into Protection Locker Register before program the register. In order to avoid CAN bus fault, OSCESL, XOSCEN, IOSCEN and STOP are programmable under CAN Reset Mode.

CKOEN	CKOEN=1: Enable Clock Output Function on "CLKOUT/GPIO 1" pin. The output frequency depends on CKOSEL[1-0].
	CKOEN=0: Disable Clock Output Function on "CLKOUT/GPIO 1" pin. The "CLKOUT GPIO 1" is a general-purpose input/output pin and CKOSEL[1-0] is ignored.
CKOSEL[1-0]	Clock Output Frequency Selection
	CKOSEL[1-0]=00: Clock output frequency = system clock frequency
	CKOSEL[1-0]=01. Clock output frequency = system clock frequency / 2
	CKOSEL[1-0]=10. Clock output frequency = system clock frequency / 4 CKOSEL[1-0]=11: Clock output frequency = system clock frequency / 8
OSCSEL	System Clock Source Selection
COOOLL	OSCSEL can be read and written in CAN Reset mode and is read-only in CAN Operating
	mode. The system clock can be switched only when both IOSC and XOSC were active.
	OSCSEL=1: XOSC is selected as system clock source
	OSCSEL=0: IOSC is selected as system clock source
XOSCEN	XOSC Enable
	XOSCEN can be read and written in CAN Reset mode and is read-only in CAN Operating
	mode. Clear this bit will turn off XOSC immediately if IOSC was selected as system clock.
	XOSC cannot be disabled if XOSC is selected as the system clock source. Setting Stop
	active by hardware when leave Stop mode by a resume trigger no matter the XOSC will be re-
	status before enter Stop mode.
	XOSCEN=1: Enable XOSC.
	XOSCEN=0: Disable XOSC.
IOSCEN	IOSC Enable
	IOSCEN can be read and written in CAN Reset mode and is read-only in CAN Operating mode. Clear this bit will turn off IOSC immediately if XOSC was selected as system clock.
	IOSC cannot be disabled if IOSC is selected as the system clock source. Setting Stop mode,
	IOSC will be disable automatically after drive 16 CLKOUT pulse. IOSC will be re-active by
	hardware when leave Stop mode by a resume trigger no matter the IOSC enable status
	before enter Stop mode.
	IOSCEN=1: Enable IOSC.
STOD	IUSCEIN=U: DISADIE IUSC.
310P	System Stop Mode
	Operating mode
	STOP=1: Enter Stop Mode, IS31IO8972 will turn off XOSC and IOSC then enter power
	saving mode. The CLKOUT will drive 16 extra clock pulses before turn off the system clock.
	An external wakeup trigger from SPI/ I ² C or CAN bus will wakeup the system and turn on
	the XOSC and IOSC. Writing a 'zero' into this bit is invalid.

GPIOCTL (0x79) GPIO Control Register RW (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	GP10E	GP0OE	-	-	GP1IN	GP0IN
WR	-	-	GP10E	GP0OE	-	-	GP1OUT	GP0OUT

IS31IO8972 has two general purpose I/O pins, GPIO0 and GPIO1. GPIO0 is combined with SPI_CSn. If SPI was active by setting MSEL0=1, the GPIO0 will be occupied by SPI and lost the GPIO function. GPIO1 is combined with clock output function. Before active the GPIO function of GPIO1, the clock output function must be disabled by clear CKONE.

GP10E	GPIO1 Output Enable
	GP10E=1: GPI01 is an output pad. The output value is GP10UT.
	GP1OE=0: GPIO1 is an input pad. The wire level will be latched into GP1IN.
GP10E	GPIO1 Output Enable
	GP1OE=1: GPIO1 is an output pad. The output value is GP1OUT.
	GP1OE=0: GPIO1 is an input pad. The wire level will be latched into GP1IN.
GP1IN	GPIO1 Input Data
	This is a read-only bit. When CKOEN=0 and GP1OE=0, the wire level of GPIO1 can be checked out by reading GP1IN register.
GP1OUT	GPIO1 Output Data
	This is a write-only bit. When CKOEN=0 and GP1OE=1, GP1OUT decides the wire level of GPIO1.
GP00N	GPIO0 Input Data
	This is a read-only bit. When MSEL0=0 and GP0OE=0, the wire level of GPIO0 can be checked out by reading GP0IN register.
GP0OUT	GPIO0 Output Data
	This is a write-only bit. When MSEL0=0 and GP0OE=1, GP0OUT decides the wire level of GPIO0.

3. MCU INTERFACE

IS31IO8972 provides two popular serial interfaces to link with the external MCU, Serial Peripheral Interface (SPI) and I²C bus. Only one serial interface can be active in an application system. Pull up the "MSEL0" input pad to enable SPI interface and disable I²C interface. Pull down both "MSEL0" and "SPI_SI / MSEL1" input pads to enable I²C interface. In IS31IO8972, both SPI and I²C are slave controllers. They receive and respond the commands from MCU by selected serial interface. There are more detail description about the SPI can I²C command in the following sections.

3.1 <u>SPI</u>

The Serial Peripheral Interface (SPI) is an enhanced synchronous serial hardware, which is compatible with Motorola's SPI specifications. In IS31IO8972, only a slave SPI controller is implemented to receive and respond the commands from MCU. The "SPI_CSn" is input only pad to identify the start and end of a command/data frame. The "SPI_CK" is clock input pad and its maximal bit rate is 3Mbps under 24MHz system clock. The "SPI_SI" is command/data input pad and the "SPI_SO" is data output pad.

IS31IO8972 only supports SPI mode 0, 0 (CPOL = 0, CPHA = 0) and 1, 1 (CPOL = 1, CPHA = 1). Data always is latched at SPI_CK's rising edge and shifted out at SPI_CK's falling edge in these two modes. The command and data are MSB-first. After the falling edge of SPI_CSn, the first byte received from SPI_SI is the "Instruction Byte" and the following byte is the "Address Byte". IS31IO8972 supports three instructions to access the CAN controller, Read, Write and Bit Modify.

Instruction	Format	Description		
Read	0010 0011	Read data from register beginning at selected address		
Write	0010 0010	Write data to register beginning at selected address		
Bit Modify	0010 0101	Bit modify selected register		

The following figure illustrates the data read from registers beginning at selected address. The first byte is the instruction "0010 0011" and the second byte is the start address of accessed register. The following byte shift-out from "SPI_SO" is the data of selected register. After the first shift-out data, the next shifting data is the data of "address+1". In other words, hardware always increases the address by 1 automatically when shifts out one byte data until the "SPI_CSn" go high.

The following figure illustrates the data write to registers beginning at selected address. The first byte is the instruction "0010 0010" and the second byte is the start address of accessed register. The following byte shift-in from "SPI_SI" is the data to be written into selected register. After the first shift-in data, the next shifting data is the data for "address+1" register. In other words, hardware always increases the address by 1 automatically when shifts in one byte data until the "SPI_CSn" go high.

IS31108972 PRELIMINARY SPI CSn SPI_CK address instruction data (addr) data (addr 0 0 0 1 0SPI_SI 0 0 1 1615141312110 high impedance SPI_SO

Byte Write by SPI

The following figure illustrates the bit modify by SPI host. The "Bit Modify" instruction only can access single byte. This instruction includes four bytes. The first byte is the instruction "0010 0101" and the second byte is the address of accessed register, the third byte is the mask byte, and the last byte is the data byte.

Bit Modify by SPI

The mask byte determines which bit in the selected register will be allowed to change. A '1' in the mask byte will allow a bit in the selected register to be modify and a '0' will not. The data byte determines what value the modified bits in the selected register will be changed to. A '1' in the data byte will set the bit and a '0' will clear the bit, provided that the mask for that bit is set to a '1'.

Note : X is don't care, can be 0 or 1

True Table of Bit Modify

3.2 Slave I²C

IS31IO8972 provides a slave I²C interface to connect with MCU if both "MSEL0" and "SPI_SI / MSEL1" are tired to low. Two wires, serial clock input (I²C_SCL) and serial data (I²C_SDA), carry information and data between MCU and IS31IO8972. The maximal bit rate is 2Mbps under 24MHz system clock without clock stretching. IS31IO8972 also provides four slave ID address option which selected by "CLKOUT/GPIO 1" and "SPI_CSn/GPIO 0" input pins during the initial state. Following table describe the relation between I/O pad and I²C address.

Slave I ² C Address	TMODE	MSEL0	MSEL1	GPIO 0	GPIO 1
0x90 / 0x91	Tie low	Tie low	Tie low	Pull-low	Pull-low
0x92 / 0x93	Tie low	Tie low	Tie low	Pull-high	Pull-low
0x94 / 0x95	Tie low	Tie low	Tie low	Pull-low	Pull-high
0x96 / 0x97	Tie low	Tie low	Tie low	Pull-high	Pull-high

Note: Pull-low or Pull-high must be implemented by the external resistors.

After the I²C START condition transmitted from MCU, the first byte received on I²C bus is "Slave ID Address + Read/Write". "Slave ID Address" has seven bits length, and the least two bits are decided by "CLKOUT/GPIO 1" and "SPI_CSn/GPIO 0" input pins in the initial state. The last bit is Read/Write command bit. If MCU is going to program data into IS31I08972 in the following procedure, this "Read/Write" bit shall be tied low. Otherwise MCU can read the designate data from IS31I08972 on the I²C bus if ties "Read/Write" bit to high.

I²C First Byte after the START Condition

The following figure illustrates the single byte write by I^2C master. MCU sends a valid " I^2C Slave ID address" and ties "Read/Write" to low in the first byte. After receives an ACK (SDA = 0) at the ninth bit of each byte, MCU sends the designate "SFR Address" and the "SFR Data".

Single Byte Write by I²C

The following figure illustrates the single byte read by I²C master. MCU must issue a write procedure to indicate the SFR Address that begins to read out the data. Then issue another read procedure by tying high the eighth bit (Read/Write) of the first byte. IS31IO8972 will shift out the selected data in the following byte. MCU must acknowledge every incoming data byte by pulling down the ACK bit except the last byte. MCU must terminate the reading procedure and get the ownership of data bus (I²C_SDA) by pulling up the ACK bit. When doesn't receive an acknowledgement in the ACK bit, IS31IO8972 will release the data line to allow the master to generate a STOP or repeated START condition.

The slave I²C also provides continuous access mode for MCU to read and write multi-byte data. The hardware will increase the address by 1 automatically based on the "Address[7-0]" received in the first byte. MCU can terminate the writing procedure anytime except the ACK bit. During the continuous reading procedure, MCU must terminate the procedure by pulling up the ACK bit and IS31IO8972 releases the data line to allow MCU to generate a STOP or repeated START condition.

After receive a START condition, the last bit of the first byte is "Read/Write". If "Read/Write" is low, the second byte received is "SFR Address". IS31IO8972 will update the internal Address Counter while acknowledge the second incoming byte. IS31IO8972 always increases the internal Address Counter by 1 when receive a byte from Master or transmit a byte to Master.

4. <u>POWER SAVING MODE</u>

IS31IO8972 provides a power saving mode by turning off the external oscillator (XOSC) and internal oscillator (IOSC). Set the bit-0 of the CLKOUT control register at address 0x78 will enable the STOP mode. Hardware will drive sixteen additional system clock cycles on the CLKOUT output pin then turn off the external oscillator and the internal oscillator. While the oscillators are turned off, whole chip will enter power saving mode. There are three events can wake up the system except re-active the RSTN input pin.

The first event is detecting a 'dominant' bit on CAN bus. When CAN transceiver detects a 'dominant' bit on CAN bus, the transceiver will pull-down the internal wire 'CAN_RX' to inform the CAN controller to leave Stop mode and reactive both the external oscillator and the internal oscillator.

The second wake-up event is detecting a 'falling edge' on "SPI_CSn". SPI host can wake up IS31IO8972 by pulling down the SPI chip select input "SPI_CSn". IS31IO8972 will resume the external oscillator and the internal oscillator when the falling edge is detected. While pull down the "SPI_CSn", Host cannot transmit the first command/data frame by SPI until the oscillator is stable. The stable time is about 10ms.

The third wake-up event is received a valid I²C ID address under STOP mode. IS31IO8972 will wake up from STOP mode when a valid I²C ID address is shifted in after a 'Start' condition. Before shift out next frame, Host must wait at least 10ms for the oscillator stabilization after wake up IS31IO8972 by shifting a valid address in SDA.

Block Diagram of Power Saving Control

5. <u>CAN Transceiver</u>

5.1 <u>General Description</u>

The CAN transceiver meets or exceeds the specifications of the ISO 11898 standard for use in application employing a Controller Area Network (CAN). As CAN transceivers, these devices provide differential transmit and receive capability for a CAN controller as signaling rates of up to 1megabit per second(Mbps).

5.2 <u>Features</u>

Fully compatible with the ISO 11898 standard High speed (up to 1MB/s) Low current standby mode with bus wake-up Suitable foe 12V and 24V system Differential receiver with high common mode range for EMI Voltage source for stabilizing the recessive bus level if split termination is used. Slope control to reduce radio frequency interface (RFI) Short circuit proof to battery and ground Thermally protected At least 110 nodes can be connected

5.3 Block Diagram

Function Block of IS31IO8972 CAN Transceiver

5.4 Function Description

Operating modes

The can transceiver provides two modes of operation which are selectable via pin STB. See following table for a description of the modes of operation.

MODE	OTD	RXD				
MODE	218	LOW	HIGH			
Normal	Low	Dominate	Recessive			
Standby	High	Wake-up request detected	No wake-up request detected			

Normal mode

In this mode, the can transceiver is able to transmit and recessive data via the bus lines CANH and CANL. See Fig.10-1 for block diagram. The differential receiver converts the analog data on the bus lines into digital data which is output to pin RXD via the multiplexer (MUX). The slope of the output signals on the bus lines is able to adjusted and optimized in a way that lowest EME is guaranteed.

Standby mode

In this mode, the transmitter and receiver are switched off, and the low-power differential receiver will monitor the bus lines. A High level on pin STB activates the low-power receiver and the wake-up filter, and after t_{BUS} the state of the CAN bus is reflected on pin RXD. In this mode, the bus lines are terminated to ground to reduce the supply current to a minimum. A diode is added in series with the high-side driver of RXD to V_{CC} in the unpowered state. In normal mode, the diode is passed. This diode is not bypassed in standby mode to reduce current consumption.

Wake-up

In standby mode, the bus lines are monitored via a low-power differential comparator. Once the low-power differential comparator has detected a dominate bus level for more than t_{BUS}, pin RXD will be LOW.

Over-temperature protection

The output drivers are protected against over-temperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature Tj, the output drivers will be disabled until the virtual junction temperature becomes lower than Tj and TXD becomes recessive again.

TXD dominate time-out function

A "TXD dominate time-out" timer circuit prevents the bus lines from being driven to a permanent state if pin TXD is forced permanently LOW by a hardware and/or software application failure. The timer is triggered by a negative edge of pin RXD. If the duration of the LOW level on pin TXD exceeds the internal timer value (t_{dom}), the transmitter is disabled, driving the lines into a recessive state. The timer is reset by a positive edge on pin TXD. The TXD dominate time-out time t_{dom} defines the minimum possible bit rate of 40KBaud.

TRANFAULT (0x76) Transceiver Fault Status Register RW (0x80)

	7	6	5	4	3	2	1	0
RD	ENFAULT	-	THMAL	STHD	STHS	STLD	STLS	STHL
WR	ENFAULT	-	-	CLRSTHD	CLRSTHS	CLRSTLD	CLRSTLS	CLRSTHL

Transceiver Fault Status Register is the status flag to notice MCU that transceiver found a fault on CAN bus. When ENFAULT=1 and any fault is issued, the transceiver will be disabled autonomously until all faults are banished from CAN bus and the TRANFAULT[4-0] are cleared by software.

ENFAULT	Fault Detector Enable ENFAULT=1: Enable the fault detection function
	ENFAULT=0: Disable the fault detection function
THMAL	Transceiver Thermal Protection Status
	This bit is read only. The status change of the THMAL bit will cause the THMIF interrupt flag. THMAL=1: Transceiver is disabled by the internal thermal shut-down protection THMAL=0: Transceiver is working on normal status
STHD	CANH Short to Power
	STHD=1: CANH short to power for the toleration time defined by CANFAULTTIM STHD=0: CANH is working on normal mode without short to power issue. CLRSTHD=1: Clear STHD and reset the internal toleration time counter.
отно	CLRSTHD=0: NO effect.
5105	STHS_1: CANH short to ground
	STHS=1. CANH is working on normal mode without short to ground issue
	CIRSTHS-1. Clear STHS
	CLRSTHS=0: No effect
STLD	CANL Short to Power
0120	STLD=1: CANL short to power.
	STLD=0: CANL is working on normal mode without short to power issue. CLRSTLD=1: Clear STLD. CLRSTLD=0: No effect
STLS	CANL Short to Ground
0.20	STLS=1: CANH short to ground for the toleration time defined by CANFAULTTIM. STLS=0: CANH is working on normal mode without short to ground issue. CLRSTLS=1: Clear STLS and reset the internal toleration time counter. CLRSTLS=0: No effect.
STHL	CANH Short to CAHL STHL=1: CANH short to CANL. STHL=0: CANH and CANL are working on normal mode without short together issue. CLRSTHL=1: Clear STHL. CLRSTHL=0: No effect.

CANFAULTTIM (0x7D) CAN Fault Detect Time Register RW (0xFF)

	7	6	5	4	3	2	1	0
RD	FDTIME[7-0]							
WR	FDTIME[7-0]							

CAN Fault Detect Time Register specifies the toleration time for 'CANH short to Power' and 'CAHL short to Ground' faults. This register is also protected by CANPTLOCK. Before program CANFAULTTIM, the CANPTCLOCK must be unlocked by writing '0xA6'. The toleration time is 'FDTIME[7-0] + 1' multiplied by the bit time. In the TRANFAULT register, the STHD flag will be active when CANH short to power over the toleration time, and the STLS flag will be active when CANL short to ground over this toleration time.

6. ANALOG PERIPHERAL

6.1 <u>On-Chip 1.8V Regulator</u>

The core logic is supplied by the 1.8V output from the on-chip regulator that regulates VDD (3.0V to 5.5V). There is variation of this 1.8V due to chip to chip difference. Because this 1.8V is also used to generate the reference for IOSC, the relative accuracy of this supply voltage is important.

REGCNF (0x77) Regulator Configuration Register RW (0x0F)

	7	6	5	4	3	2	1	0
RD	IBRXTRM[2-0]			REGTRM[2-0]			HYSEN	TMPSEL
WR	IBRXTRM[2-0]				REGTRM[2-0]]	HYSEN	TMPSEL

Regulator Configuration Register (REGCNF) is protected by "Protection Locker Register". MUC must unlock the security bit by programming an "A6H" into Protection Locker Register before program the register. REGCNF is used to adjust four parameters includes thermal protection, Rx's hysteresis, output of regulator and the bias current of Rx's comparator. The following table shows detail content of circuit application. The default value of REGCNF is 0x0F. However, to get optimal performance, we strongly recommend users to write the value 0x93 to REGCNF as its initial value. This should be done prior to trim of IOSC or other analog peripherals.

IBRXTRM[2]	IBRXTRM[1]	IBRXTRM[0]	IB_RX (uA)						
0	0	0	27.5 (default)						
0	0	1	25						
0	1	0	22.5						
0	1	1	20 (recommend)						
1	0	0	17.5						
1	0	1	15						
1	1	0	12.5						
1	1	1	10						

Bias Current Selector of the receiver comparator

REGTRM

IBRXTRM

Regulator Voltage Trimmer

The content of this register trims the 1.8V regulator output level. After reset, REGTRM[2-0] is loaded with default 011 to set the regulator to its mean. MCU should access this information and set the calibrated value into REGTRM[2-0] to get the 1.8V on PAD VDD18. This should be done prior to trimming of IOSC or other analog peripherals. The following table lists the REGATRM value versus the VDD18 value. Note the measurement need to wait for a certain time after setting to allow the regulator to be stable. The time required depends on the decoupling capacitor on PAD VDD18. Typical delay should be around 10msec.

REGTRM[2]	REGTRM[1]	REGTRM[0]	VDD18 (V)				
0	0	0	1.65				
0	0	1	1.68				
0	1	0	1.71				
0	1	1	1.75 (default)				
1	0	0	1.8 (recommend)				
1	0	1	1.85				
1	1	0	1.92				
1	1	1	2.01				

HYSEN

Hysteresis Voltage Enable of the receiver comparator

HYSEN=0: Enable hysteresis voltage function and increase 19mV range of the receiver. HYSEN=1: Disable hysteresis voltage function.

TMPSEL Thermal Protection Selector

TMDSEL 0. The thermal protection is defined

TMPSEL=0: The thermal protection is defined around $120^{\circ}C$.

TMPSEL=1: The thermal protection is defined around 175℃.

6.2 Crystal Oscillator (XOSC)

Crystal oscillator (XOSC) provides a very accurate clock source for the system. The default for XOSC is in disabled state after power on or reset. Please note when enabling XOSC from disabled state to enabled state, it usually takes 10s of mili-second for XOSC to stabilize. The software needs to take this into considerations before switching into XOSC clock. Typically, the crystal pins are shared with GPIO pins. The software also should take care that the shared GPIO function is properly turned off not affecting the crystal oscillation.

The XOSC circuit is described in the following block diagram.

An external feedback resistor typically ranging from 1M Ohm to 4M Ohm is required. The capability of a stable oscillation depends on several factors, the operating supply voltage, the frequency of crystal, the intended operating temperature range, the quality of the crystal, and the external capacitance load.

XOSCEN	XOSC Operations
0	Powered down.
1	High power for 5V up to 24MHz.

6.3 Internal Oscillator

The internal oscillator is peripheral as it provides the default clock source after reset and other critical timing. The internal oscillator has the salient features that it behaves well during the enable and disable transient. No clock glitches or extra clock edge is generated during the on/off transition, and the oscillator can reach to stable oscillations within very short time typically within 10 cycles. The IOSC consumes around 200uA when enabled. The IOSC is always enabled except entering STOP mode or clear IOSCEN to zero.

IOSCEN	IOSC Operations
0	Powered down.
1	Enable IOSC, 16MHz clock output

7. <u>TEST MODES</u>

For engineer debugging and mass production requirement, IS31IO8972 supports four test modes, CAN Self-Loop Test Mode, CAN Transceiver Only Mode, Automatic Test Pattern Generation (ATPG) Mode and Memory Built-in Test (MBIST) Mode. CAN Self-Loop Test Mode is described in the last section of "CAN Controller" chapter. Automatic Test Pattern Generation (ATPG) Mode is active by tying "TMODE" input pin to high. Tying "MSEL0" input pin to low and "SPI SI/MSEL1" to high will enable CAN Transceiver Only Mode.

TMODE	MSEL0	SPI_SI/MSEL1	Function
1	Х	Х	Automatic Test Pattern Generation (ATPG) Mode
0	1	Х	Normal mode and SPI interface is selected
0	0	0	Normal mode and I ² C interface is selected
0	0	1	CAN Transceiver Only Mode

Test Mode Selection by Input Pins

Under CAN Transceiver Only Mode, the internal signal 'CAN_TX', 'CAN_RX', and 'CAN_STB' will be re-directed to IO PAD 'SPI_CK/SCL', 'SPI_SO/SDA', and 'SPI_CSn/GPIO0'. User can verify the embedded transceiver by these test pads.

Set the bit-2 of CAN Test Enable Register at address 0x7F after unlock the CAN Test Locker register by programming an "A6h" will enable the Memory Built-in Test (MBIST) mode. The built-in test circuit will verify the embedded SRAM and all normal function will be disabled under the MBIST mode. User can check the "MBIST Done" and the "MBIST Fail" signal on GPIO0 and GPIO1 pads.

8. <u>Electrical Characteristics</u>

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Power Supply	•			•		
VDDIO	Supply voltage	Standby or normal mode	2.5	5	5.5	V
VDD_CAN	CAN Bus supply voltage	Standby or normal mode		5		V
		Standby mode	250	500	750	uA
lcc	Supply current	Normal mode Recessive, Vtxd=Vcc Dominate, Vtxd=0V	2.5 30	5 50	10 70	mA
Bus lines (pins C	CANH and CANL)			1		
Vo (dom)	Dominant output voltage	Vtxd = 0V Pin CANH Pin CANL	2.75 0.5	3.5 1.5	4.5 2.25	V V
	Differential bus	Vtxd = 0; dominate; RL = 60Ω	1.5	-	. MAX. 5.5 750 10 750 4.5 2.25 3.0 12 0.9 100 2.5 0.9 1.00 2.5 0.9 1.00 2.5 100 2.5 100 2.5 100 2.5 100 2.5 100 12 10 10 10 10 70 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10	V
Valifi	(Vcanh– Vcanl)	Vtxd = Vcc; recessive; no load	-12	-		mV
Vo (reces)	Recessive voltage	Normal mode; Vtxd = Vcc; no load	2	0.5Vcc	3	V
lo (sc)	Short-circuit output current	Vtxd = 0V ,Vcanh = 0V Vcanl= 40V	-40 40	-70 70	-95 100	mA mA
lo (reces)	Recessive output current	-27V < Vcan < +32V	-2.5	-	2.5	mA
Vdiff (th)	Differential receiver threshold voltage	-12V< Vcanl <+12V -12V< Vcanh <+12V Normal mode Standby mode	0.5 0.4	0.7 0.7	0.9 1.15	V V
Vdiff (th)	Differential receiver threshold voltage (deviation)	Normal mode -12V< Vcanl <+12V -12V< Vcanh <+12V	50	70	100	mV
Ri (cm)	Common-mode input resistance	Standby or normal mode		300		KΩ
Ri (dif)	Differential input resistance	Standby or normal mode		600		KΩ
Ci (cm)	Common-mode input capacitance	Vtxd = Vcc; not tested	-	-	20	pF
Ci (dif)	Differential input capacitance	Vtxd = Vcc; not tested	-	-	10	pF
Timing characte	ristics					
tBus	Dominate time for Wake-up via bus	Standby mode	0.75	2.5	5	

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
td (stb-norm)	Delay standby mode to normal mode	Normal mode	5	7.5	10	us
Temperature Characteristics						
Tj	Shutdown junction temperature	Thermal shutdown		165		°C
ТА	Ambient operating temperature	Standby or normal mode	-40		125	°C
TSTG	Storage temperature		-65		150	С°

8.1 Application information

PACKAGE OUTLINE 20-pin SSOP

Symbol	Dimensions in Inch		
Syllibol	MIN.	NOM.	MAX.
A	0.053	0.064	0.069
A1	0.004	0.006	0.010
A2	-	-	0.059
b	0.008	-	0.012
С	0.007	-	0.010
D	0.337	0.341	0.344
ш	0.228	0.236	0.244
E1	0.150	0.154	0.157
e	0.025 BASIC		
L	0.016	0.025	0.050
L1	0.041 BASIC		
heta °	0°	-	8°

Notes:

JEDEC Outline: MO-137 AD

Dimension D does not include mold protrusions or gate burrs. Mold protrusions and gate burrs shall not exceed 0.006" per side. Dimension E1 does not include interlead mold protrusions. Interlead mold protrusions shall not exceed 0.010" per side.

Dimension b does note include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.004" total in excess of b dimension at maximum material condition. Dambar intrusion shall not reduce dimension b by more than 0.[x]2" at least.

ORDERING INFORMATION

Operating temperature -40°C to 125°C

Order Part No.	Package	QTY	
IS31IO8972-SALS4	SSOP-20, Lead-free	75/Tube	

DISCLAIMER AND DECLARATION

1. Copyright © 2018 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances.
- 2. Applications in medical appliances, life support devices system or flight vehicle using ISSI's products are not authorized without express written approval of ISSI.

Revision History

<u>V0.94</u>

- 1. Revise Block Diagram.
- 2. Move "Electrical Characteristics" to the last chapter.
- 3. Change the max. operating temperature range from 85° C to 125° C.
- 4. Remove the internal timing characteristics of TXD and RXD.
- 5. Revise REGCNF for I2 and I3 version.

<u>V0.95</u>

- 1. Chang the part no. name as IS31IO8972.
- 2. Update ordering information to show the right part no.

Revision 0A

1. Change to ISSI preliminary release version number.