

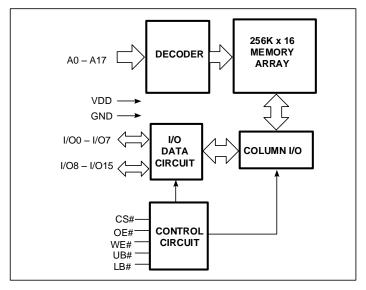
256Kx16 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC RAM

AUGUST 2018

KEY FEATURES

- High-speed access time: 45ns, 55ns
- CMOS low power operation
 - Operating Current: 22 mA (max) at 85°C
 - CMOS Standby Current: 5.0uA (typ) at 25°C
- TTL compatible interface levels
- Single 5V \pm 10 % power supply
- Package: 44-pin TSOP (Type II)
- Three state outputs
- Commercial, Industrial and Automotive temperature support
- Lead-free available

DESCRIPTION


The *ISSI* IS62/65C25616EL are high-speed, low power, 4M bit static RAMs organized as 256K words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology.

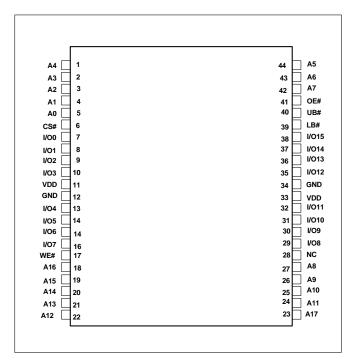
This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices. When CS# is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable (WE#) controls both writing and reading of the memory. A data byte allows Upper Byte (UB#) and Lower Byte (LB#) access.

The IS62/65C25616EL are packaged in the JEDEC standard 44-Pin TSOP (TYPE II).

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2018 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.


Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATIONS 44-Pin mini TSOP (Type II)

PIN DESCRIPTIONS

A0-A17	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS#	Chip Enable Input
OE#	Output Enable Input
WE#	Write Enable Input
LB#	Lower-byte Control (I/O0-I/O7)
UB#	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

FUNCTION DESCRIPTION

SRAM is one of random access memories. Each byte or word has an address and can be accessed randomly. SRAM has three different modes supported. Each function is described below with Truth Table.

STANDBY MODE

Device enters standby mode when deselected (CS# HIGH). The input and output pins (I/O0-15) are placed in a high impedance state. The current consumption in this mode will be ISB2. CMOS input in this mode will maximize saving power.

WRITE MODE

Write operation issues with Chip selected (CS# LOW) and Write Enable (WE#) input LOW. The input and output pins (I/O0-15) are in data input mode. Output buffers are closed during this time even if OE# is LOW. UB# and LB# enables a byte write feature. By enabling LB# LOW, data from I/O pins (I/O0 through I/O7) are written into the location specified on the address pins. And with UB# being LOW, data from I/O pins (I/O8 through I/O15) are written into the location.

READ MODE

Read operation issues with Chip selected (CS# LOW) and Write Enable (WE#) input HIGH. When OE# is LOW, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted. UB# and LB# enables a byte read feature. By enabling LB# LOW, data from memory appears on I/O0-7. And with UB# being LOW, data from memory appears on I/O8-15.

In the READ mode, output buffers can be turned off by pulling OE# HIGH. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used.

TRUTH TABLE

INOTHIADEL								
Mode	CS#	WE#	OE#	LB#	UB#	1/00-1/07	I/O8-I/O15	VDD Current
Not Selected	Н	Х	Х	Х	Х	High-Z	High-Z	ISB2
Output Disabled	L	Н	Н	Х	Х	High-Z	High-Z	ICC,ICC1
Output Disabled	L	Н	L	Н	Н	High-Z	High-Z	100,1001
	L	Н	L	L	Н	DOUT	High-Z	
Read	L	Н	L	Н	L	High-Z	DOUT	ICC,ICC1
	L	Н	L	L	L	DOUT	DOUT	
	L	L	Χ	L	Н	DIN	High-Z	
Write	L	L	X	Н	L	High-Z	DIN	ICC,ICC1
	L	Ĺ	Х	Ĺ	Ĺ	DIN	DIN	

ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
tStg	Storage Temperature	-65 to +150	°C
PT	Power Dissipation	1.5	W
I _{OUT} ⁽²⁾	DC Output Current (LOW)	20	mA

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE(1)

Range	Ambient Temperature	VDD	Speed(ns)
Commercial	0°C to +70°C	5V ± 10 %	45
Industrial	-40°C to +85°C	5V ± 10 %	45
Automotive	-40°C to +125°C	5V ± 10 %	55

Note:

PIN CAPACITANCE (1)

Parameter	Symbol	Test Condition	Max	Units
Input capacitance	C _{IN}	T 25°C f - 1 MHz \/ \/ (tup)	6	pF
DQ capacitance (IO0–IO15)	C _{I/O}	$T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD}(typ)$	8	pF

Note:

THERMAL CHARACTERISTICS (1)

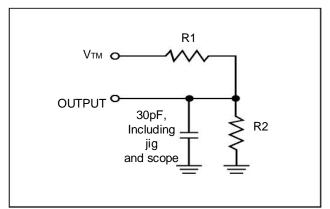
Parameter	Symbol	Rating	Units
Thermal resistance from junction to ambient (airflow = 1m/s)	ReJA	TBD	°C/W
Thermal resistance from junction to pins	R _{θJB}	TBD	°C/W
Thermal resistance from junction to case	Rejc	TBD	°C/W

Note:

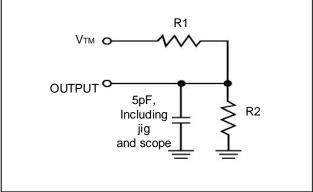
^{1.} Full device AC operation assumes a 100 µs ramp time from 0 to VDDmin) and 200 µs wait time after VDD stabilization.

[.] These parameters are guaranteed by design and tested by a sample basis only.

^{1.} These parameters are guaranteed by design and tested by a sample basis only.



AC TEST CONDITIONS (OVER THE OPERATING RANGE)


Parameter	Unit
Input Pulse Level	0V to 3.5V
Input Rise and Fall Time	3ns
Input and Output Timing and Reference Level	1.5V
R1	1838 Ω
R2	994Ω
V _{TM}	5V
Output Load Conditions	Refer to Figure 1 and 2

OUTPUT LOAD CONDITIONS FIGURES

FIGURE 1

FIGURE 2

ELECTRICAL CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit	
Vон	Output HIGH Voltage	V _{DD} = Min., I _{OH} = -1.0 mA	4	2.4	_	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 2.1 \text{ mA}$			0.4	V
V _{IH} ⁽¹⁾	Input HIGH Voltage		2.2	V _{DD} + 0.5	V	
V _{IL} ⁽¹⁾	Input LOW Voltage		-0.3	0.8	V	
			Com.	-1	1	
ILI	Input Leakage	GND < V _{IN} < V _{DD}	Ind.	-2	2	μΑ
		tage	5			
			Com.	-1	1	
I_{LO}	Output Leakage	GND < V _{IN} < V _{DD} , Output Disabled	Ind.	-2	2	μΑ
			Auto.	-5	5	

Notes:

DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

Cumbal	nbol Parameter Test Conditions		Cro	da	45/55	īns	Unit	
Symbol	Parameter	rest Conditions	Grade		Typ ⁽¹⁾	Max	Oilit	
	V _{DD} Dynamic	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Cor	n.	-	20		
ICC	Operating Supply	$V_{DD} = V_{DD}(max)$, $I_{OUT} = 0mA$, $f = f_{max}.CS\# = V_{IL}$	Inc	d.	-	22	mΑ	
	Current	1 – Illiax, OO# – VIL	Auto.	A3	-	22		
	ICC1 V_{DD} Static $V_{DD} = V_{DD}(max)$, $I_{OUT} = 0mA$, $f = 0$, $CSH = V_{DD}$	Com.		-	5			
ICC1		$f = 0$, $CS\# = V_{IL}$	Ind.		-	5	mΑ	
	Current	1 = 0, 00% = 112	Auto. A3		-	5		
				25°C	5.0	8(2)		
	CMOS Standby	$V_{DD} = V_{DD}(max), f = 0,$	Com.	40°C	-	9(2)		
ISB2	Current (CMOS	CS# ≥ V _{DD} - 0.2V,		70°C	-	11	μΑ	
	Inputs)	$VIN \le 0.2V$ or $VIN \ge V_{DD} - 0.2V$	Ind.	85°C	-	16	,	
			Auto. A3	125°C	-	30		

Noes:

- 1. Typical value indicates the value for the center of distribution at V_{DD}=V_{DD} (Typ.), and not 100% tested.
- 2. Maximum value at 25°C, 40°C are guaranteed by design, and not 100% tested.

VILL(min) = -2.0V AC (pulse width < 10ns). Not 100% tested.
 VIHH (max) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested.

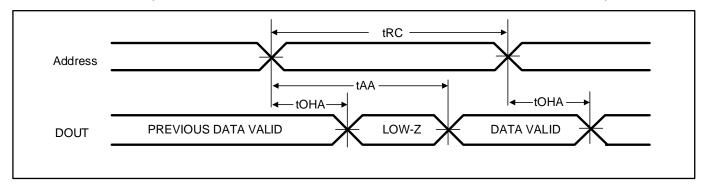
AC CHARACTERISTICS⁽⁶⁾ (OVER OPERATING RANGE)

READ CYCLE AC CHARACTERISTICS

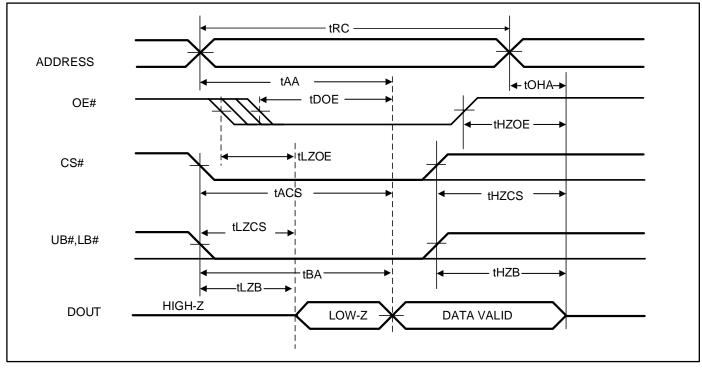
Doromotor	Symbol	45	ns	55	ins		notes
Parameter	Symbol	Min	Max	Min	Max	ns	notes
Read Cycle Time	tRC	45	-	55	-	ns	1,5
Address Access Time	tAA	-	45	-	55	ns	1
Output Hold Time	tOHA	10	-	10	-	ns	1
CS# Access Time	tACS	-	45	-	55	ns	1
OE# Access Time	tDOE	-	20	-	25	ns	1
OE# to High-Z Output	tHZOE	-	15	-	20	ns	2
OE# to Low-Z Output	tLZOE	5	-	5	-	ns	2
CS# to High-Z Output	tHZCS	-	15	-	15	ns	2
CS# to Low-Z Output	tLZCS	5	-	5	-	ns	2
LB#, UB# Access Time	tBA	45		55		ns	1,7
LB#, UB# to High-Z Output	tHZB	-	15	-	15	ns	2
LB#, UB# to Low-Z Output	tLZB	5	-	5	-	ns	2

WRITE CYCLE AC CHARACTERISTICS

Danamatan	Comple al	45ns		55ns			
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Write Cycle Time	tWC	45	-	55	-	ns	1,3,5
CS# to Write End	tSCS	35	-	35	-	ns	1,3
Address Setup Time to Write End	tAW	35	-	35	-	ns	1,3
Address Hold from Write End	tHA	0	-	0	-	ns	1,3
Address Setup Time	tSA	0	-	0	-	ns	1,3
LB#, /UB# Valid to End of Write	tPWB	35	-	35	-	ns	1,3
WE# Pulse Width	tPWE	35	-	35	-	ns	1,3,4
Data Setup to Write End	tSD	20	-	25	-	ns	1,3
Data Hold from Write End	tHD	0	-	0	-	ns	1,3
WE# LOW to High-Z Output	tHZWE	-	15	-	15	ns	2,3
WE# HIGH to Low-Z Output	tLZWE	5	-	5	-	ns	2,3


Notes:

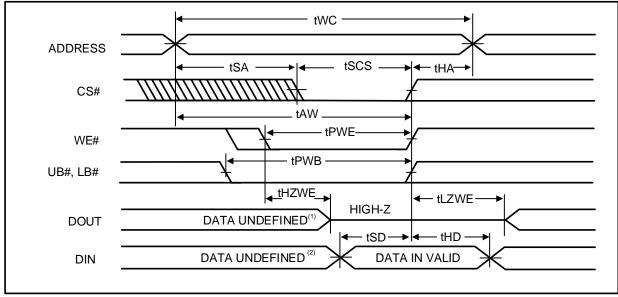
- 1. Tested with the load in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. tHZOE, tHZCS, tHZB, and tHZWE transitions are measured when the output enters a high impedance state. Not 100% tested.
- 3. The internal write time is defined by the overlap of CS#=LOW, UB# or LB# =LOW, and WE#=LOW. All four conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. tPWE > tHZWE + tSD when OE# is LOW.
- Address inputs must meet V_{IH} and V_{IL} SPEC during this period. Any glitch or unknown inputs are not permitted. Unknown input with standby mode is acceptable.
- Data retention characteristics are defined later in DATA RETENTION CHARACTERISTICS.



TIMING DIAGRAM

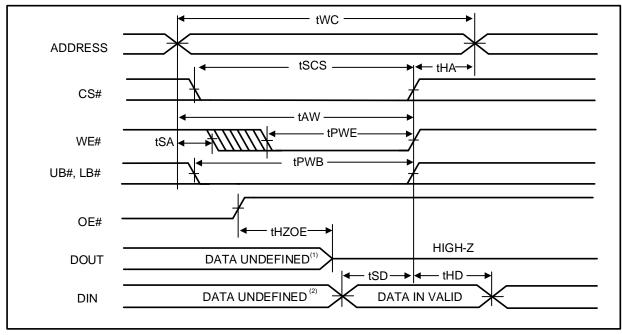
READ CYCLE NO. 1⁽¹⁾ (ADDRESS CONTROLLED, CS# = OE# = UB# = LB# = LOW, WE# = HIGH)

READ CYCLE NO. $2^{(1)}$ (OE# CONTROLLED, WE# = HIGH)



Note:

^{1.} Address is valid prior to or coincident with CS# LOW transition.


WRITE CYCLE NO. 1^(1, 2)(CS# Controlled, OE# = HIGH or LOW)

Notes:

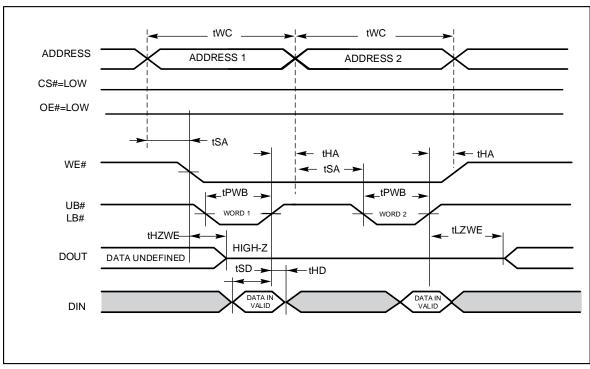
- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE# goes high before
 Write Cycle. tHZOE is the time DOUT goes to High-Z after OE# goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

WRITE CYCLE NO. 2^(1,2)(WE# CONTROLLED: OE# IS HIGH DURING WRITE CYCLE)


Notes:

- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE# goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after OE# goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

WRITE CYCLE NO. 3(WE# CONTROLLED: OE# & CS# ARE LOW DURING WRITE CYCLE)

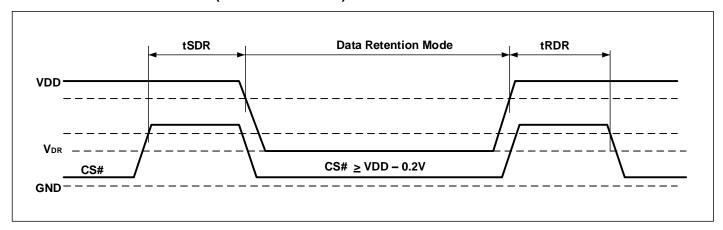

Note

1. If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.

WRITE CYCLE NO. 4 (UB# & LB# Controlled)

Notes

- If OE# is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.
- 2. Due to the restriction of note1, OE# is recommended to be HIGH during write period.
- Note WE# stays LOW in this example. If WE# toggles, tPWE and tHZWE must be considered.


DATA RETENTION CHARACTERISTICS

Symbol	Parameter	Test Condition			Typ (1)	Max	Unit
V_{DR}	V _{DD} for Data Retention	See Data Retention Waveform			-	-	V
	V _{DD} = V _{DR} (min),	25°C	-	5.0	8		
I _{DR}	Data Retention Current	CS# ≥ V _{DD} – 0.2V or (LB# and UB#) ≥ V _{DD} - 0.2V,	85°C	-	-	16	uA
		VIN ≤ 0.2V or VIN ≥ V _{DD} - 0.2V	125°C	-	-	30	
t _{SDR} (2)	Data Retention Setup Time	See Data Retention Waveform			-	-	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		tRC			ns

Notes:

- 1. Typical value indicates the value for the center of distribution at $V_{DD} = V_{DR}$ (min.), and not 100% tested.
- 2. VDD power down slope must be longer than 100 us/volt when enter into Data Retention Mode.

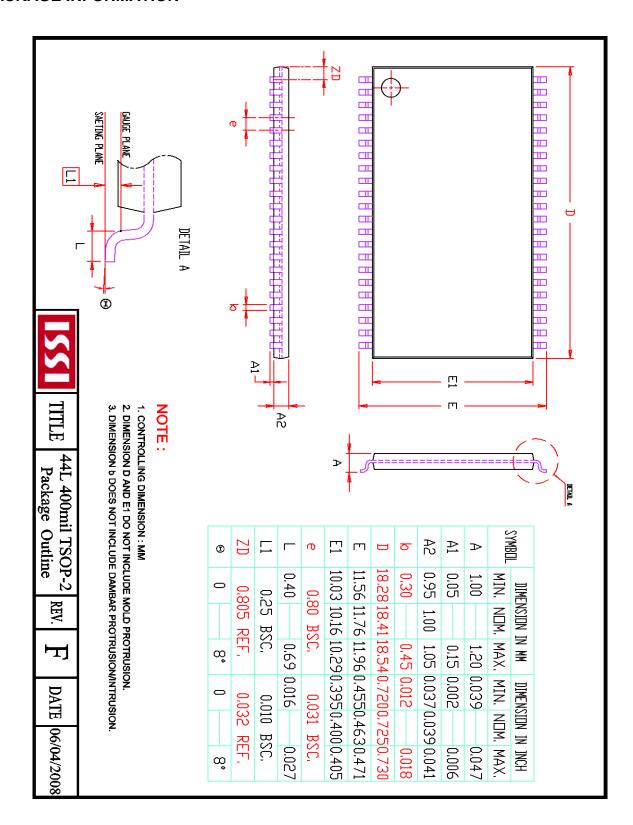
DATA RETENTION WAVEFORM (CS# CONTROLLED)

ORDERING INFORMATION

IS62C25616EL

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package	
45	IS62C25616EL-45TLI	44-pin TSP-II, Lead-free	


Automotive Range (A3): -40°C to +125°C

Speed (ns)	Order Part No.	Package
55	IS65C25616EL-55CTLA3	44-pin TSOP-II, Lead-free, Copper Lead-frame

PACKAGE INFORMATION

