

MCU with 64K/2K with LCD/LED Controller

GENERAL DESCRIPTION

CS5523 is a general-purpose micro-controller with 64K embedded flash memory and 2K SRAM. Extensive peripherals are included targeted for embedded system with LCD/LED displays. The CPU is based on 1-T 8051 with T0/T1/T2 and additional 16-bit T3/T4, 24-bit T5 and a 30-bit WDT. Embedded in the CPU core are also a full-duplex UART port, an enhanced EUART port with LIN capability, one I²C master/slave and two I²C pure slave controllers, one SPI mater/slave controller, up to 55 GPIO pins with each GPIO pin configurable as external interrupt and wake up.

The flexibility in clock setting includes an on-chip precision oscillator with the accuracy deviation of +/-2%, or a low power internal 32KHz oscillator, or an ultra low power precision real time clock (RTC) and a programmable PLL up to 10MHz. The clock selections are combined with flexible power management schemes, including NORMAL, PMM, IDLE, and STOP, and SLEEP modes to balance CPU speed and power consumption.

The built-in LCD controller can support up to 8 common and 28 segment output with ½, ⅓ or ¼bias. When configured as LED controller, it supports a directdrive mode that can drive up to 8 SEG by 15 digits with 64-level brightness control. A Programmable Counter Array (PCA) with 6 channels of Capture/Compare/PWM modules can be used for various purposes controlling external devices. There are additional 2 independent 8-bit PWM and a buzzer waveform generator with frequency range of 128Hz to 2048Hz and programmable duty cycle.

Analog peripherals include a high performance 12-bit Analog to Digital Converter (ADC) with 30usec conversion time. There is an on-chip temperature sensor within the ADC block.

CS5523 also provides a flexible means of flash programming that supports ISP and IAP. The protection of data loss is implemented in hardware by access restriction of critical storage segments. The code security is reinforced with sophisticated writer commands and ISP commands. The on-chip break point processor also allows easy debugging which can be integrated with ISP. Reliable power-on-reset circuit and low supply voltage detection allows reliable operations under harsh environments.

FEATURES

CPU and Memory

- 1-Cycle 8051 CPU core up to 16MHz
- 16-bit Timers T0/T1/T2/T3/T4 and 24-bit T5
- Programmable 30-bit Watch Dog Timer
- Integrated break point controller and debug port through I²C slave
- Up to 32 external interrupts shared with GPIO pins
- Power saving modes Normal, PMM, IDLE, STOP, and SLEEP modes
- Wake-Up noise filter up to 8.4 msec

- 256B IRAM and 1792B XRAM
- 64KB Flash Memory and 256B Information Block
 Code security and data loss protection
 - Endurance: 100K cycles and Retention: 10 years @85°C

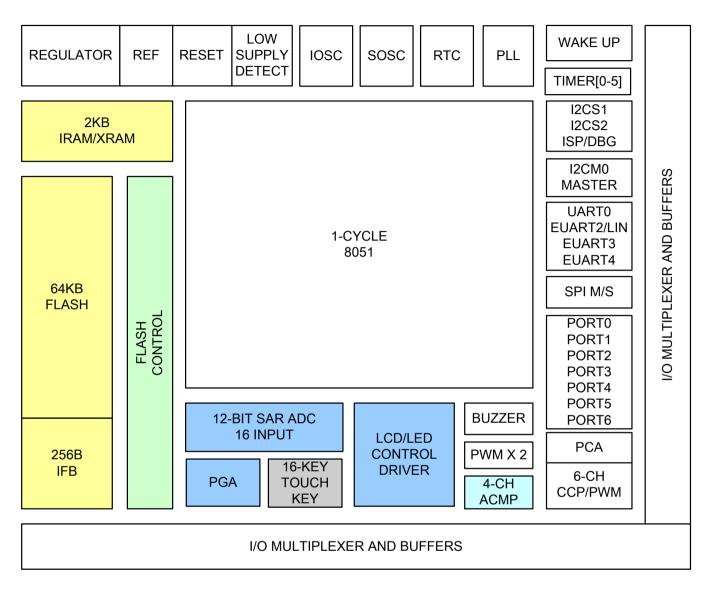
Clock Sources

- Internal oscillator at 16MHz of +/- 2% accuracy
- Internal low power 32KHz oscillator
- ◆ RTC 32.768KHz of low power consumption
- ◆ PLL (M + 64)/N, M = 0 255, N = 1 16

Digital Peripherals

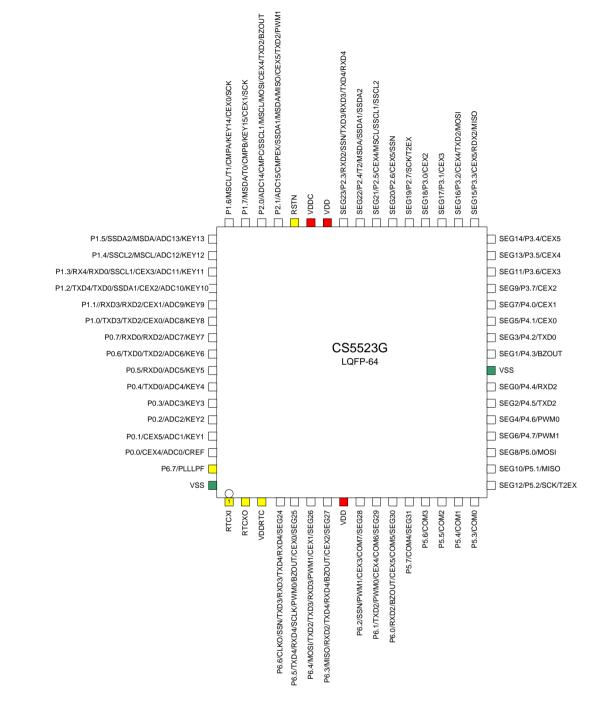
- 16-bit PCA and 6 channels of CCP modules
 - Capture/Compare/Timer Mode
 - 8/16-bit PWM Mode and 8-bit WPWM Mode
- Two 8-bit PWM Controllers
- One buzzer waveform generator
- One I²C Master, two I²C pure Slave
- One SPI Master/Slave Controllers
- One 8051 UART
- One full-duplex LIN-capable EUART2
- Two full-duplex EUART3 and EUART4
- LCD Controller
 - 32 x 4, 31 x 5, 30 x 6, 29 x 7, 28 x 8
 - ¹/₂ or ¹/₃ or ¹/₄ Bias and 8 Brightness
- LED Controller
 - Up to 8 SEG x 15 DIGIT common cathode direct drive
 - Up to 8 COM x 28 SEG external drive
 - Programmable 64 brightness

Analog Peripherals

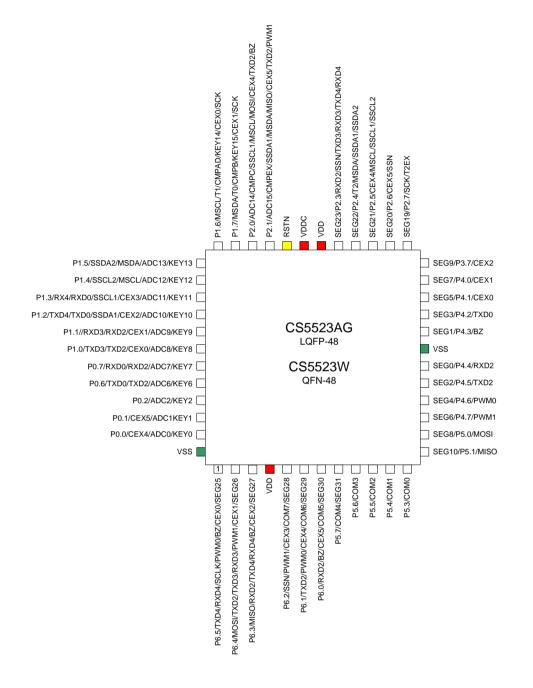

- 12-bit monotonic SAR ADC
 - 500KHz, 128µsec conversion time (1.8~2.4V)
 - 4MHz, 16usec conversion time (2.5~5.5V)
 - 16 inputs multiplexed with GPIO
- Programmable Gain Amplifier
- 3-channel Analog Comparator
- On-chip trim-able 1.2V reference
- On-chip temperature sensor
- Capacitance sense touch-key controller scan up to 15-key
 - Oscillator type for low power and wake up
 - Charge conversion for EMI
- Power on reset (1.5V) and LVD/LVR (2.0V-4.5V)

Miscellaneous

- Up to 55 GPIO pins
- 2.2V to 5.5V single supply with on-chip 1.8V regulator. Operating down to 1.8V
- Active current < 400uA/MHz in NORMAL mode
- Low power standby 25uA in SLEEP mode
- Operating temperature -40°C to 85°C
- LQFP-64, LQFP-48 and QFN-48 package and RoHS compliant
- Also available as dice



BLOCK DIAGRAM



PIN CONNECTION

Note: The Part Number and Logo is reference only and do not reflect the actual marking on the package.

PIN DESCRIPTIONS

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				Port 0.0 GPIO
				8051 P0.0 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				CEX4
P0.0	IOCELL2A I/O, A	62	47	This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode.
				This pin can be configured as SSN input for SPI Controller
				ADC0
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.0 ANEN1.
				CREF
				External capacitor must be connected for touch key controller.
				Port 0.1 GPIO
				8051 P0.1 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P0.1	IOCELL2A I/O, A	61	46	CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.1 ANEN1.
				KEY1
				This pin can be configured as input to touch key controller by setting IOCFGP0.1 ANEN.
				Port 0.2 GPIO
				8051 P0.2 GPIO.
				PINT
D 0 0	IOCELL2A	<u> </u>	45	This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P0.2	I/O, A	60	45	ADC2
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.2 ANEN1.
				KEY2
				This pin can be configured as input to touch key controller by setting IOCFGP0.2 ANEN.
	IOCELL2A			Port 0.3 GPIO
P0.3	I/O, A	59	-	8051 P0.3 GPIO.
	. = ,			PINT

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input ADC3
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.3 ANEN1.
				KEY3
				This pin can be configured as input to touch key controller by setting IOCFGP0.3 ANEN.
				Port 0.4 GPIO
				8051 P0.4 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P0.4	IOCELL2A	58	_	TXD0
	I/O, A	00		This pin can also be configured as the transmit output pin for UART0.
				ADC4 Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.4 ANEN1.
				KEY4
				This pin can be configured as input to touch key controller by setting IOCFGP0.4 ANEN.
				Port 0.5 GPIO
				8051 P0.5 GPIO.
				PINT
				RXD0
				This pin can also be configured as the receiving input pin for UART0.
P0.5	IOCELL2A I/O, A	57	-	This pin can be configured as the PINT0 or PINT1 pin external interrupt input.
				ADC5
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.5 ANEN1.
				KEY5
				This pin can be configured as input to touch key controller by setting IOCFGP0.5 ANEN.
				Port 0.6 GPIO
				8051 P0.6 GPIO.
			44	PINT
P0.6	IOCELL2A	56		This pin can be configured as the PINT0 or PINT1 pin external interrupt input
	I/O, A			TXD0
				This pin can also be configured as the transmit output pin for UART0.
				TXD2 This pin can also be configured as the transmit output pin for EUART2.
				ADC6
	1	1		

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.6 ANEN1. KEY6 This pin can be configured as input to touch key controller by setting IOCFGP0.6 ANEN.
P0.7	IOCELL2A I/O, A	55	43	Port 0.7 GPIO 8051 P0.7 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input RXD0 This pin can also be configured as the receiving input pin for UART0. RXD2 This pin can also be configured as the receiving input pin for EUART0. RXD2 This pin can also be configured as the receiving input pin for EUART2. ADC7 Thin pin can be configured as input to ADC and PGA by setting IOCFGP0.7 ANEN1. KEY7 This pin can be configured as input to touch key controller by setting IOCFGP0.7 ANEN. Port 1.0 GPIO
P1.0	IOCELL2A I/O, A	54	42	Port 1.0 GPIO 8051 P1.0 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input TXD2 This pin can also be configured as the transmit output pin for UART2 TXD3 This pin can also be configured as the transmit output pin for EUART3 CEX0 This pin can also be configured as the CEX pin for CCP0. CEX is an input for compare/capture mode, and an output for PWM mode. ADC8 Thin pin can be configured as input to ADC and PGA by setting IOCFGP1.0 ANEN1. KEY 8 This pin can be configured as input to touch key controller by setting IOCFGP1.0 ANEN.
P1.1	IOCELL2A I/O, A	53	41	Port 1.1 GPIO 8051 P1.1 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input RXD2 This pin can also be configured as the receiving input pin for UART2 RXD3

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can also be configured as the receiving input pin for EUART3
				CEX1
				This pin can also be configured as the CEX pin for CCP1. CEX is an input for compare/capture mode, and an output for PWM mode.
				ADC9
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP1.1 ANEN1.
				KEY9
				This pin can be configured as input to touch key controller by setting IOCFGP1.1 ANEN.
				Port 1.2 GPIO
				8051 P1.2 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				SSDA1
				This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
		52		CEX2
P1.2	IOCELL2A I/O, A		40	This pin can also be configured as the CEX pin for CCP2. CEX is an input for compare/capture mode, and an output for PWM mode.
				TXD0
				This pin can also be configured as the transmit output pin for UART0
				This pin can also be configured as the transmit output pin for EUART4 ADC10
				Thin pin can be configured as input to ADC and PGA by setting
				IOCFGP1.2 ANEN1.
				KEY10
				This pin can be configured as input to touch key controller by setting IOCFGP1.2 ANEN.
				Port 1.3 GPIO
				8051 P1.3 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				SSCL1
P1.3	IOCELL2A I/O, A	51	39	This pin can be configured as I2CS1 SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				CEX3
				This pin can also be configured as the CEX pin for CCP3. CEX is an input for compare/capture mode, and an output for PWM mode.
				RXD0
				This pin can also be configured as the receiving input pin for UART0
				RXD4

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can also be configured as the receiving input pin for EUART4
				ADC11
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP1.3 ANEN1.
				KEY11
				This pin can be configured as input to touch key controller by setting IOCFGP1.3 ANEN.
				Port 1.4 GPIO
				8051 P1.4 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				SSCL2
	IOCELL2A	50		This pin can be configured as I2CS2 SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
P1.4	I/O, A	50	38	MSCL
				This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				ADC12
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP1.4 ANEN1.
				KEY12
				This pin can be configured as input to touch key controller by setting IOCFGP1.4 ANEN.
				Port 1.5 GPIO
				8051 P1.5 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				SSDA2
D4 C	IOCELL2A	40		This pin can be configured as I2CS2 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
P1.5	I/O, A	49	37	MSDA
				This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				ADC13
				Thin pin can be configured as input to ADC and PGA by setting IOCFGP1.5 ANEN1.
				KEY13
				This pin can be configured as input to touch key controller by setting IOCFGP1.5 ANEN.
P1.6	IOCELL2A	48	36	Port 1.6 GPIO
	I/O, A			8051 P1.6 GPIO.

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				T1
				This pin can be configured as T1 external input
				This pin can also be configured as the CEX pin for CCP0. CEX is an input for compare/capture mode, and an output for PWM mode.
				MSCL
				This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary
				SCK
				This pin can be configured as SPI SCK I/O.
				CMPA
				This pin can be configured as input to analog comparator A by setting IOCFG1.6 ANEN1.
				KEY14
				This pin can be configured as input to touch key controller by setting IOCFGP1.6 ANEN.
				Port 1.7 GPIO
				8051 P1.7 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				ТО
			35	This pin can be configured as T0 external input
				CEX1 This pin can also be configured as the CEX pin for CCP1. CEX is an input
				for compare/capture mode, and an output for PWM mode.
P1.7	IOCELL2A I/O, A	47		MSDA
	1/O, A			This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD
				is necessary.
				This pin can be configured as input to analog comparator B by setting IOCFG1.7 ANEN1.
				SCK
				This pin can be configured as SPI SCK I/O.
				KEY15
				This pin can be configured as input to touch key controller by setting IOCFGP1.7 ANEN.
	IOCELL2A			Port 2.0 GPIO
P2.0	I/O, A	46	34	8051 P2.0 GPIO.
			SSCL1	

P2.1 IOCELL2A IVO, A 45 45 45 45 45 7115 pin can be configured as I2CS1 SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSCL This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MOSI This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MOSI This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode. TD2 This pin can also be configured as the transmit output pin for UART2. B2OUT This pin can be configured as input to analog comparator C by setting IOCFG2.0 ANEN1. ADC14 Thin pin can be configured as input to ADC and PGA by setting IOCFG2.0 ANEN. P012.1 GPIO 8051 P2.1 GPIO. SBD4 This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as SPI MISO I/O. This pin can be configured as SPI MISO I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as SPI MISO I/O. The IOCOFG must also b	PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
P2.1 IOCELL2A I/O, A 45 33 This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MOSI This pin can be configured as SPI MOSI I/O. CEX4 This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode. TXD2 This pin can also be configured as the transmit output pin for UART2. BZOUT This pin can be configured as the Buzzer output. CMPC This pin can be configured as input to analog comparator C by setting IOCFG2.0 ANEN. POT 2.1 GPIO B051 P2.1 GPIO. BSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as the transmit output pin for UART2. <td></td> <td></td> <td></td> <td></td> <td>configured as Open-Drain and external pull up resistor connecting to VDD is necessary.</td>					configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
P2.1 IOCELL2A I/O, A 45 45 33 P2.1 IOCELL2A I/O, A 45 33 45 33 P2.1 IOCELL2A I/O, A 45 33 15 91 100 P2.1 IOCELL2A I/O, A 45 33 15 100 1					This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD
P2.1 IOCELL2A I/O, A 45 45 33 P2.1 IOCELL2A I/O, A 45 33 Iocenfigured as lobe configured as lobe lobe lobe lobe lobe lobe lobe lobe					MOSI
P2.1 IOCELL2A I/O, A 45 45 45 45 45 45 45 45 45 This pin can laso be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PVM mode. P2.1 IOCELL2A I/O, A 45 45 33 This pin can also be configured as the Buzzer output. CMPC This pin can be configured as input to analog comparator C by setting IOCFG2.0 ANEN1. ADC14 Thin pin can be configured as input to ADC and PGA by setting IOCFG2.0 ANEN. 8051 P2.1 GPIO. SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. This pin can be configured as PVM1 output. CEXS This pin can be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PVM mode. CMPEX This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PVM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can a					
P2.1 IOCELL2A I/O, A 45 45 33 IOCELL2A I/O, A 45 33 Insi pin can be configured as I2CM SDA I/O. This pin can be configured as input to ADC and PGA by setting IOCFG2.0 ANEN1. ADC14 This pin can be configured as input to ADC and PGA by setting IOCFG2.0 ANEN. 90012100 BSDA1 This pin can be configured as I2CS1 SDA I/O. This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISDA This pin can be configured as I2CM SDA I/O. This pin can be configured as SPI MISO I/O. MISO This pin can be configured as I2CM SDA I/O. This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
P2.1 IOCELL2A I/O, A 45 33 This pin can be configured as the CEX pin for CCP5. CEX is an input in can be configured as PWM1 output. P2.1 IOCELL2A I/O, A 45 33 PD: 1 This pin can be configured as input to analog comparator C by setting IOCFG2.0 ANEN1. ADC14 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.0 ANEN. Port 2.1 GPIO 8051 P2.1 GPIO. SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. This pin can be configured as PWM1 output. CEX5 This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN. TXD2 This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN.					for compare/capture mode, and an output for PWM mode.
P2.1 IOCELL2A I/O, A 45 33 P2.1 IOCELL2A I/O, A 45 33 P2.1 IOCELL2A I/O, A 45 33					
P2.1 IOCELL2A I/O, A 45 33					
P2.1 IOCELL2A I/O, A 45 45 33 CMPC This pin can be configured as input to analog comparator C by setting IOCFG2.0 ANEN1. P2.1 IOCELL2A I/O, A 45 45 33 Port 2.1 GPIO SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. PWM1 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. This pin can also be configured as input					
P2.1 IOCELL2A I/O, A 45 33 Port 2.1 GPIO 8051 P2.1 GPIO. SSDA1 P2.1 IOCELL2A I/O, A 45 33 Port 2.1 GPIO 8051 P2.1 GPIO. SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. This pin can be configured as SPI MISO I/O. PWM1 This pin can also be configured as SPI MISO I/O. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
P2.1 IOCELL2A I/O, A 45 45 33 P2.1 IOCELL2A I/O, A 45 33 Port 2.1 GPIO. SEDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. This pin can be configured as SPI MISO I/O. PWM1 This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 This pin can also be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					This pin can be configured as input to analog comparator C by setting
P2.1 IOCELL2A I/O, A 45 33 Port 2.1 GPIO BOST P2.1 GPIO. BOST P2.1 GPIO. PWM1 This pin can be configured as SPI MISO I/O. PWM1 OUTO. CEXS This pin can be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN. CDEST P2.1 ANEN.					
P2.1 IOCELL2A I/O, A 45 45 33 8051 P2.1 GPIO. SBDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MSDA This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. PWM1 This pin can be configured as SPI MISO I/O. PWM1 This pin can be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					Thin pin can be configured as input to ADC and PGA by setting
P2.1IOCELL2A I/O, A4533SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.P2.1IOCELL2A I/O, A4533This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.MISO This pin can be configured as SPI MISO I/O.MISO This pin can be configured as SPI MISO I/O.PWM1 This pin can be configured as PWM1 output.CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1.TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					Port 2.1 GPIO
P2.1IOCELL2A I/O, A4533SSDA1 This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.P2.1IOCELL2A I/O, A4533This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.MISO This pin can be configured as SPI MISO I/O.MISO This pin can be configured as SPI MISO I/O.PWM1 This pin can be configured as PWM1 output.CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.CMPEX This pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1.TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					8051 P2 1 GPIO
P2.1IOCELL2A I/O, A454533This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.P2.1IOCELL2A I/O, A4533This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.MISOThis pin can be configured as SPI MISO I/O.PWM1This pin can be configured as SPI MISO I/O.PWM1This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.CMPEXThis pin can also be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1.TXD2This pin can also be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
P2.1IOCELL2A I/O, A454533This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.P2.1IOCELL2A 4533This pin can be configured as SPI MISO I/O.PWM1 This pin can be configured as PWM1 output.CEX5 					This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD
P2.1 IOCELL2A 45 33 configured as Open-Drain and external pull up resistor connecting to VDD is necessary. MISO This pin can be configured as SPI MISO I/O. PWM1 This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFG2.1 ANEN.					MSDA
P2.1 IOCELL2A I/O, A 45 33 This pin can be configured as SPI MISO I/O. PWM1 This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					configured as Open-Drain and external pull up resistor connecting to VDD
P2.1 IOULLEZA 45 33 PWM1 This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					MISO
P2.1 I/O, A 45 33 PWM1 This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.		IOCELI 2A	. –		This pin can be configured as SPI MISO I/O.
This pin can be configured as PWM1 output. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.	P2.1		45	33	PWM1
This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.		,			
for compare/capture mode, and an output for PWM mode. CMPEX This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
This pin can be configured as input to analog comparator external threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
threshold by setting IOCFG2.1 ANEN1. TXD2 This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
This pin can also be configured as the transmit output pin for UART2. ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					threshold by setting IOCFG2.1 ANEN1.
ADC15 Thin pin can be configured as input to ADC and PGA by setting IOCFGP2.1 ANEN.					
IOCFGP2.1 ANEN.					ADC15
P2.3 IOCELL 41 29 Port 2.3 GPIO					
	P2.3	IOCELL	41	29	Port 2.3 GPIO

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
	IO, A			8051 P2.3 GPIO.
				RXD2
				This pin can also be configured as the receiving input pin for EUART2.
				TXD3
				This pin can also be configured as the transmit output pin for EUART3
				RXD3
				This pin can also be configured as the receiving input pin for EUART3.
				TXD4
				This pin can also be configured as the transmit output pin for EUART4
				RXD4
				This pin can also be configured as the receiving input pin for EUART4.
				SSN
				This pin can be configured as SPI SSN input.
				LSEG23
				This pin can be configured as the output of the LED segment driver
				SEG23
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP2.3 to 1.
				Port 2.4 GPIO
				8051 P2.4 GPIO.
				T2
				This pin can be configured as T2 external input
				SSDA1
				This pin can be configured as I2CS1 SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
		40		SSDA2
D 2 4	IOCELL		28	This pin can be configured as I2CS2 SDA I/O. The IOCOFG must also be
P2.4	IO, A			configured as Open-Drain and external pull up resistor connecting to VDD
				is necessary.
				MSDA
				This pin can be configured as I2CM SDA I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD
				is necessary.
				LSEG22
				This pin can be configured as the output of the LED segment driver
				SEG22
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP2.4 to 1.
				Port 2.5 GPIO
			27	8051 P2.5 GPIO.
D 0 -	IOCELL			CEX4
P2.5	IO, A	39		This pin can also be configured as the CEX pin for CCP4. CEX is an input
	,			for compare/capture mode, and an output for PWM mode.
				SSCL1

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as I2CS1 SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				SSCL2
				This pin can be configured as I2CS2 SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				MSCL
				This pin can be configured as I2CM SCL I/O. The IOCOFG must also be configured as Open-Drain and external pull up resistor connecting to VDD is necessary.
				LSEG21
				This pin can be configured as the output of the LED segment driver
				SEG21
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP2.5 to 1.
				Port 2.6 GPIO
				8051 P2.6 GPIO.
				CEX5
	IOCELL			This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.
P2.6	IOCELL IO, A	38	26	SSN
	10,71			This pin can be configured as SPI SSN input.
				LSEG20 This pin can be configured as the output of the LED segment driver
				SEG20
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP2.6 to 1.
				Port 2.7 GPIO
				8051 P2.7 GPIO.
				SCK
				This pin can be configured as SPI SCK I/O.
				T2EX Timer 2 Trigger
P2.7	IOCELLHP IO, A	37	25	This pin also can be configured as T2EX signal for Timer 2. T2EX is the Timer 2 trigger input.
				LSEG19
				This pin can be configured as the output of the LED segment driver
				SEG19 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP2.7 to 1.
				Port 3.0 GPIO
		36		8051 P3.0 GPIO.
P3.0	IOCELL			PINT
F3.0	IO, A	30	-	This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				CEX2

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can also be configured as the CEX pin for CCP2. CEX is an input for compare/capture mode, and an output for PWM mode. LSEG18 This pin can be configured as the output of the LED segment driver SEG18 This pin can be configured as the LCD segment driving output by setting
				ANEN of IOCFGP3.0 to 1.
				Port 3.0 GPIO
				8051 P3.0 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P3.1	IOCELL	35	-	CEX3
	IO, A			This pin can also be configured as the CEX pin for CCP3. CEX is an input for compare/capture mode, and an output for PWM mode.
				This pin can be configured as the output of the LED segment driver
				SEG17
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.1 to 1.
				Port 3.2 GPIO
				8051 P3.2 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
				CEX4
P3.2	IOCELL	34	_	This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode.
1 0.2	IO, A	04		TXD2
				This pin can also be configured as the transmit output pin for EUART2.
				This pin can be configured as SPI MOSI I/O.
				LSEG16
				This pin can be configured as the output of the LED segment driver
				SEG16
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.2 to 1.
				Port 3.3 GPIO
				PINT
	IOCELL	22		This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P3.3	IO, A	33	-	8051 P3.3 GPIO.
				This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.
				RXD2

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can also be configured as the receiving input pin for EUART2.
				MISO
				This pin can be configured as SPI MISOI I/O.
				LSEG15
				This pin can be configured as the output of the LED segment driver SEG15
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.3 to 1.
				Port 3.4 GPIO
				8051 P3.4 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
	IOCELLHN			
P3.4	I/O, A	32	-	This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode.
				This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG14
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.4 to 1.
				Port 3.5 GPIO
				8051 P3.5 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt
				input CEX4
P3.5	IOCELLHN I/O, A	31	-	This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode.
				LSEG13/DIG13
				This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG13
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.5 to 1.
				Port 3.6 GPIO
				8051 P3.6 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
	IOCELLHN	<u></u>		CEX3
P3.6	I/O, A	30	-	This pin can also be configured as the CEX pin for CCP3. CEX is an input for compare/capture mode, and an output for PWM mode.
				LSEG11/DIG11
				This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG11

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as the LCD segment output by enabling ANEN of IOCFGP3.6.
P3.7	IOCELLHN I/O, A	29	24	of IOCFGP3.6. Port 3.7 GPIO 8051 P3.7 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input CEX2 This pin can also be configured as the CEX pin for CCP2. CEX is an input for compare/capture mode, and an output for PWM mode. LSEG9/DIG9 This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG9 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP3.7 to 1.
P4.0	IOCELLHN I/O, A	28	23	Port 4.0 GPIO 8051 P4.0 GPIO. CEX1 This pin can also be configured as the CEX pin for CCP1. CEX is an input for compare/capture mode, and an output for PWM mode. LSEG7/DIG7 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG7 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.0 to 1.
P4.1	IOCELLHN I/O, A	27	22	Port 4.1 GPIO 8051 P4.1 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input CEX0 This pin can also be configured as the CEX pin for CCP0. CEX is an input for compare/capture mode, and an output for PWM mode. LSEG5/DIG5 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG5 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.1 to 1.
P4.2	IOCELLHN I/O, A	26	21	Port 4.2 GPIO 8051 P4.2 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input TXD0 This pin can also be configured as the transmit output pin for UART0

PIN NAME	TYPE	LQFP- 64 Pin NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				LSEG3/DIG3 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG3 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.2 to 1.
P4.3	IOCELLHN I/O, A	25	20	Port 4.3 GPIO. 8051 P4.3 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input BZOUT This pin can also be configured as the buzzer output LSEG1/DIG1 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG1 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.3 to 1.
P4.4	IOCELLHN I/O, A	23	18	Port 4.4 GPIO 8051 P4.4 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input RXD2 This pin can also be configured as the receiving input pin for EUART2. LSEG0/DIG0 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG0 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.4 to 1.
P4.5	IOCELLHN I/O, A	22	17	Port 4.5 GPIO 8051 P4.5 GPIO. TXD2 This pin can also be configured as the transmit output pin for EUART2 LSEG2/DIG2 This pin can be configured as the output of the LED segment driver or the digit direct driver SEG2 This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.5 to 1.
P4.6	IOCELLHN I/O, A	21	16	Port 4.6 GPIO 8051 P4.6 GPIO. PINT This pin can be configured as the PINT0 or PINT1 pin external interrupt input PWM0

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can also be configured as the PWM0 output
				LSEG4/DIG4 This pin can be configured as the output of the LED segment driver or the
				digit direct driver
				SEG4
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.6 to 1.
				Port 4.7 GPIO
				8051 P4.7 GPIO.
				PINT
				This pin can be configured as the PINT0 or PINT1 pin external interrupt input
P4.7	IOCELLHN	20	45	PWM1
P4.7	I/O, A	20	15	This pin can also be configured as the PWM1 output
				LSEG6/DIG6
				This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG6
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP4.7 to 1.
				Port 5.0 GPIO
				8051 P5.0 GPIO.
				MOSI
	IOCELLHN			This pin can be configured as SPI MOSI I/O.
P5.0	I/O, A	19	14	LSEG8/DIG8
	1/O, A			This pin can be configured as the output of the LED segment driver or the digit direct driver
				SEG8
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP5.0 to 1.
				Port 5.1 GPIO
				8051 P5.1 GPIO.
				MISO
				This pin can be configured as SPI MISO I/O.
P5.1	IOCELLHN	18	13	LSEG10/DIG10
	I/O, A			This pin can be configured as the output of the LED segment driver or the
				digit direct driver
				SEG10
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP5.1 to 1.
				Port 5.2 GPIO
				8051 P5.2 GPIO.
	IOCELLHN	_		SCK
P5.2	I/O, A	17	-	This pin can be configured as SPI SCK I/O.
	,			T2
				This pin can be configured as T2 external input.
				LSEG12/DIG12

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as the output of the LED segment driver or the digit direct driver SEG12
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP5.2 to 1.
				Port 5.3 GPIO
				8051 P5.3 GPIO.
	IOCELLHP			LCOM0/DSEG0
P5.3	I/O, A	16	12	This pin can be configured as the output of the LED common driver or the segment direct driver.
	<i>1</i> /0, / (COMO
				This pin can be configured as the LCD commons driving output by setting
				ANEN of IOCFGP5.3 to 1.
				Port 5.4 GPIO
				8051 P5.4 GPIO.
				LCOM1/DSEG1
P5.4	IOCELLHP	15	11	This pin can be configured as the output of the LED common driver or the
_	I/O, A			segment direct driver.
				COM1
				This pin can be configured as the LCD commons driving output by setting ANEN of IOCFGP5.4 to 1.
				Port 5.5 GPIO
				8051 P5.5 GPIO.
				LCOM2/DSEG2
P5.5	IOCELLHP I/O, A	14	10	This pin can be configured as the output of the LED common driver or the segment direct driver.
	<i>1</i> /0, / (COM2
				This pin can be configured as the LCD commons driving output by setting ANEN of IOCFGP5.5 to 1.
				Port 5.6 GPIO
				8051 P5.6 GPIO.
				LCOM3/DSEG3
P5.6	IOCELLHP I/O, A	13	9	This pin can be configured as the output of the LED common driver or the segment direct driver .
				COM3
				This pin can be configured as the LCD commons driving output by setting ANEN of IOCFGP5.6 to 1.
				Port 5.7 GPIO
				8051 P5.7 GPIO.
				LSEG31
				This pin can be configured as the output of the LED segment driver.
	IOCELLHP	10		LCOM4/DSEG4
P5.7	I/O, A	12	8	This pin can be configured as the output of the LED common driver or the segment direct driver
				SEG31
				This pin can be configured as the LCD segment driving output by setting ENCOM4 of LCDCFGA to 0 and ANEN of MFCFGP5.7 to 1.
			<u> </u>	COM4

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as the LCD commons driving output by setting ENCOM4 of LCDCEGA to 1 and ANEN of MECEGP5.7 to 1
P6.0	IOCELLHP I/O, A	11	7	ENCOM4 of LCDCFGA to 1 and ANEN of MFCFGP5.7 to 1. Port 6.0 GPIO 8051 P6.0 GPIO. CEX5 This pin can also be configured as the CEX pin for CCP5. CEX is an input for compare/capture mode, and an output for PWM mode. RXD2 This pin can also be configured as the receiving input pin for EUART2. BZOUT This pin can also be configured as the buzzer output LSEG30 This pin can be configured as the output of the LED segment driver LCOM5/DSEG5 This pin can be configured as the output of the LED common driver or the segment direct driver SEG30 This pin can be configured as the LCD segment driving output by setting ENCOM45 of LCDCFGA to 0 and ANEN of MFCFGP6.0 to 1.
P6.1	IOCELLHP I/O, A	10	6	ENCOM45 of LCDCFGA to 0 and ANEN of MFCFGP6.0 to 1. COM5 This pin can be configured as the LCD commons driving output by setting ENCOM4 of LCDCFGA to 1 and ANEN of MFCFGP6.0 to 1. Port 6.1 GPIO 8051 P6.1 GPIO. CEX4 This pin can also be configured as the CEX pin for CCP4. CEX is an input for compare/capture mode, and an output for PWM mode. TXD2 This pin can also be configured as the transmit output pin for EUART2. PWM0 This pin can also be configured as the PWM0 output LSEG29 This pin can be configured as the output of the LED segment driver LCOM6/DSEG6 This pin can be configured as the output of the LED common driver or the segment direct driver SEG29 This pin can be configured as the LCD segment driving output by setting ENCOM6 of LCDCFGA to 0 and ANEN of MFCFGP6.1 to 1. COM6 This pin can be configured as the LCD commons driving output by setting ENCOM6 of LCDCFGA to 0 and ANEN of MFCFGP6.1 to 1.
P6.2	IOCELLHP I/O, A	9	5	ENCOM6 of LCDCFGA to 1 and ANEN of MFCFGP6.1 to 1. Port 6.2 GPIO 8051 P6.2 GPIO. CEX3 This pin can also be configured as the CEX pin for CCP3. CEX is an input for compare/capture mode, and an output for PWM mode. SSN

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				This pin can be configured as SPI SSN I/O. PWM1
				This pin can also be configured as the PWM0 output
				LSEG28
				This pin can be configured as the output of the LED segment driver
				LCOM7/DSEG8
				This pin can be configured as the output of the LED common driver or the segment direct driver
				SEG28
				This pin can be configured as the LCD segment driving output by setting ENCOM7 of LCDCFGA to 0 and ANEN of MFCFGP6.2 to 1.
				COM7
				This pin can be configured as the LCD commons driving output by setting ENCOM7 of LCDCFGA to 1 and ANEN of MFCFGP6.2 to 1.
				Port 6.3 GPIO
				8051 P6.3 GPIO.
				BZOUT
				This pin can also be configured as the buzzer output
				This pin can also be configured as the CEX pin for CCP2. CEX is an input for compare/capture mode, and an output for PWM mode.
				RXD2
				This pin can also be configured as the receiving input pin for EUART2.
	IOCELL	7	2	TXD4
P6.3	I/O, A	/	3	This pin can also be configured as the transmit output pin for EUART4.
				RXD4
				This pin can also be configured as the receiving input pin for EUART4.
				MISO
				This pin can be configured as SPI MISOI I/O.
				LSEG27
				This pin can be configured as the output of the LED segment driver SEG27
				This pin can be configured as the LCD segment driving output by setting
				ANEN of IOCFGP6.3 to 1.
				Port 6.4 GPIO
				8051 P6.4 GPIO.
				PWM1
				This pin can also be configured as the PWM1 output
P6.4	IOCELL	6	2	This pin can also be configured as the CEX pin for CCP1. CEX is an input for compare/capture mode, and an output for PWM mode.
10.4	I/O, A	0	<u> </u>	TXD2
				This pin can also be configured as the transmit output pin for EUART2.
				TXD3
				This pin can also be configured as the transmit output pin for EUART3.
				RXD3
				This pin can also be configured as the receiving input pin for EUART3.

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION
				MOSI
				This pin can be configured as SPI MOSI I/O.
				LSEG26
				This pin can be configured as the output of the LED segment driver
				SEG26
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP6.4 to 1.
				Port 6.5 GPIO
				8051 P6.5 GPIO.
				TXD4
				This pin can also be configured as the transmit output pin for EUART4.
				RXD4
				This pin can also be configured as the receiving input pin for EUART4.
				PWM0
				This pin can also be configured as the PWM0 output
				BZOUT
P6.5	IOCELL I/O, A	5	1	This pin can also be configured as the buzzer output
	1/O, A			
				This pin can also be configured as the CEX pin for CCP0. CEX is an input for compare/conture made, and an output for PM/M made
				for compare/capture mode, and an output for PWM mode.
				This pin can be configured as SPI SCK I/O. LSEG25
				This pin can be configured as the output of the LED segment driver
				SEG25
				This pin can be configured as the LCD segment driving output by setting
				ANEN of IOCFGP6.5 to 1.
				Port 6.6 GPIO
				8051 P6.6 GPIO.
				CLKO
				This pin can be configured as clock output pin.
				TXD3
	IOCELL			This pin can also be configured as the transmit output pin for EUART3.
P6.6	I/O, A	4	-	RXD3
	1/O, A			This pin can also be configured as the receiving input pin for EUART3.
				SSN
				This pin can be configured as SPI SSN I/O.
				SEG24
				This pin can be configured as the LCD segment driving output by setting ANEN of IOCFGP6.6 to 1.
				Port 6.7 GPIO
	IOCELL			8051 P6.7 GPIO.
P6.7	I/O, A	63	-	PLLLPF
	. = ,			This pin should be configured as PLL low pass filter by setting ANEN of
DTOVO	۸			IOCFGP6.7 when PLL is in use.
RTCXO	<u>A</u>	3	-	RTC Crystal Output.
RXCXI	A	2	-	RTC Crystal Input

PIN NAME	TYPE	LQFP- 64 PIN NO.	LQFP- 48/ QFN- 48 PIN NO.	PIN FUNCTION DESCRIPTION			
VDDRT C	Р	1	-	RTC Supply Voltage. VDDRTC is an independent power supply for RTC. This should be 1.8V to 5.5V range.			
VSS	G	24, 64	19, 48	Ground connection.			
VDD	Р	8, 42	4, 30	VDD supplies power to I/O buffers as well as analog circuits such as ADC and comparators. A good decoupling capacitor between VDD and VSS pins is critical for good performance. VDD ranges from 1.8V to 5.5V			
VDDC	Р	43	31	Supply voltage for internal circuits Typical $1.6V - 2.0V$ and should have external decoupling capacitor > $1uF$.			
RSTN	I/O, A	44	32	Typically connect a resistor to VDD and a capacitor to VSS. RSTN is pulled low actively when LVR occurs. The threshold of RSTN is set at 0.3VDD. RSTN is also used for special test mode and writer mode entry.			
				Reset Low Active.			

Note: "P" denotes power supply pins

"G" denotes ground pins. All VSS pins are internally shorted resistively.

"O", "IO", "A" denotes output only, input/output, and analog types.

"IOCELL" denotes standard IOCELL

"IOCELLHN" denotes high sink current Pad

"IOCELLHP" denotes high source current pad

"IOCELL2A" denotes IOCELL with two analog inputs

MEMORY MAP

There are total 256 bytes internal RAM in CS5523, the same as standard 8052. There are total 1792 bytes auxiliary RAM allocated in the 8051 extended RAM area 0x0100h – 0x07FFh. Programs can use "MOVX" instruction to access the XRAM. The 64KB embedded flash occupies the code address space from 0x0000h – 0xFFFFh. The CPU reset to address 0xF000h. The memory map is shown in the following:

REGISTER MAP SFR(0x80 - 0xFF) and XFR (0xA000 - 0xAFFF)

The SFR address map maintains maximum compatibilities to most commonly used 8051 like MCU. The following table shows the SFR address map. Since SFR can be accessed by direct addressing mode, registers of built-in peripherals that require fast access are mostly located in SFR. XFR is mainly used for on-chip peripheral control and configurations.

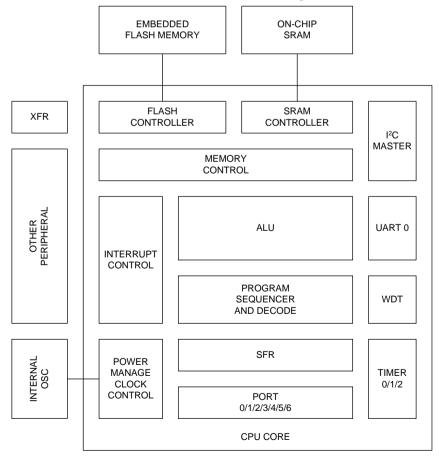
	0	1	2	3	4	5	6	7
0XF0	В		CLSR	CHSR	I2CMSA	I2CMCR	I2CMBUF	I2CMTP
0XE0	ACC	PCACON	CCAP3L	CCAP3H	CCAP4L	CCAP4H	CCAP5L	CCAP5H
0XD0	PSW	PCAMOD	CCAP0L	CCAP0H	CCAP1L	CCAP1H	CCAP2L	CCAP2H
0XC0	P6		SCON2	I2CMTO	PMR	STATUS	MCON	TA
0XB0	P3	-	CCAPM0	CCAPM1	CCAPM2	CCAPM3	CCAPM4	CCAPM5
0XA0	P2	SPICR	SPIMR	SPIST	SPIDATA	SFIFO2	SBUF2	SINT2
0X90	P1	EXIF	WTST	DPX	CMPST	DPX1	SFIFO4	SBUF4
0X80	P0	SP	DPL	DPH	DPL1	DPH1	DPS	PCON
	8	9	А	В	С	D	E	F
0XF8	EXIP	MD0	MD1	MD2	MD3	MD4	MD5	ARCON
0XE8	EXIE	СН	MXAX	I2CSCON1	I2CSST1	I2CSADR1	I2CSDAT1	P4
0XD8	WDCON	CL	DPXR	I2CSCON2	I2CSST2	I2CSADR2	I2CSDAT2	P5
0XC8	T2CON	ТВ	RLDL	RLDH	TL2	TH2	ADCCTL	T34CON
0XB8	IP	ADCPGA	ADCL	ADCH	SCON3	SFIFO3	SBUF3	SINT3
0XA8	IE	ADCCFG	-	-	TL4	TH4	TL3	TH3
0X98	SCON0	SBUF0	SINT4	ESP	SCON4	ACON	I2CSADR3	WKMASK
0X88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	CKSEL

REGISTER MAP XFR (0xA000 - 0xAFFF)

	0	1	2	3	4	5	6	7
A000	REGTRM	IOSCITRM	IOSCVTRM	T5CON	TL5	TH5	TT5	
A010	LVDCFG	LVDTHD	FLSHADM	INTPCT1	INTPCT2	LVDTHH	PGACFG	COMPCFG
A020	FLSHCMD	FLSHDAT	FLSHADH	FLSHADL	ISPCLKF	CNTPCTL	CNTPCTH	-
A030	CMPCFGAB	CMPCFGCD	CMPVTH0	CMPVTH1	-	-	PLLM	PLLN
A040	IOCFGP0.0	IOCFGP0.1	IOCFGP0.2	IOCFGP0.3	IOCFGP0.4	IOCFGP0.5	IOCFGP0.6	IOCFGP0.7
A050	MFCFGP0.0	MFCFGP0.1	MFCFGP0.2	MFCFGP0.3	MFCFGP0.4	MFCFGP0.5	MFCFGP0.6	MFCFGP0.7
A060	IOCFGP2.0	IOCFGP2.1	IOCFGP2.2	IOCFGP2.3	IOCFGP2.4	IOCFGP2.5	IOCFGP2.6	IOCFGP2.7
A070	MFCFGP2.0	MFCFGP2.1	MFCFGP2.2	MFCFGP2.3	MFCFGP2.4	MFCFGP2.5	MFCFGP2.6	MFCFGP2.7
	8	9	А	В	С	D	E	F
A008	RTCSCND0	RTCSCND1	RTCSCND2	RTCSCND3	-	-	RTCCMD	-
A018	-	-	-	-	-	-	-	-
A028	PIOEDGR0	PIOEDGR1	-	PIOEDGR3	PIOEDGR4	-	GPWKCFG	CLKOUT
A038	PIOEDGF0	PIOEDGF1	-	PIOEDGF3	PIOEDGF4	-	-	-
A048	IOCFGP1.0	IOCFGP1.1	IOCFGP1.2	IOCFGP1.3	IOCFGP1.4	IOCFGP1.5	IOCFGP1.6	IOCFGP1.7
A058	MFCFGP1.0	MFCFGP1.1	MFCFGP1.2	MFCFGP1.3	MFCFGP1.4	MFCFGP1.5	MFCFGP1.6	MFCFGP1.7
A068	IOCFGP3.0	IOCFGP3.1	IOCFGP3.2	IOCFGP3.3	IOCFGP3.4	IOCFGP3.5	IOCFGP3.6	IOCFGP3.7
A078	MECEGP3.0	MFCFGP3.1	MECEGP3 2	MECEGP3 3	MECEGP3 4	MECEGP3 5	MECEGP3.6	MECEGP3 7

	0	1	2	3	4	5	6	7
A080	-	-	-	-	-	-	-	-
A090	LINCTRL	LINCNTRH	LINCNTRL	LINSBRH	LINSBRL	LININT	LININTEN	-
A0A0	-	SBAUD3H -	SBAUD3L-	SBAUD4H -	SBAUD4L-	PCACPS	CLRLD	CHRLD
A0B0	LINTCON	TXDTOL	TXDTOH	RXDTOL	RXDTOH	BSDCLR	BSDACT	BSDWKC
A0C0	IOCFGP4.0	IOCFGP4.1	IOCFGP4.2	IOCFGP4.3	IOCFGP4.4	IOCFGP4.5	IOCFGP4.6	IOCFGP4.7
A0D0	MFCFGP4.0	MFCFGP4.1	MFCFGP4.2	MFCFGP4.3	MFCFGP4.4	MFCFGP4.5	MFCFGP4.6	MFCFGP4.7
A0E0	BPINTF	BPINTE	BPINTC	BPCTRL	PC5AL	PC5AH	PC5AT	-
A0F0	PC1AL	PC1AH	PC1AT	-	PC2AL	PC2AH	PC2AT	-
	8	9	А	В	С	D	E	F
A088	PWM0CFG	PWM0DTY	PWM1CFG	PWM1DTY	PWMFG	-	-	-
A098	DBPCIDL	DBPCIDH	DBPCIDT	DBPCNXL	DBPCNXH	DBPCNXT	-	-
A0A8	IOCFGP6.0	IOCFGP6.1	IOCFGP6.2	IOCFGP6.3	IOCFGP6.4	IOCFGP6.5	IOCFGP6.6	IOCFGP6.7
A0B8	MFCFGP6.0	MFCFGP6.1	MFCFGP6.2	MFCFGP6.3	MFCFGP6.4	MFCFGP6.5	MFCFGP6.6	MFCFGP6.7
A0C8	IOCFGP5.0	IOCFGP5.1	IOCFGP5.2	IOCFGP5.3	IOCFGP5.4	IOCFGP5.5	IOCFGP5.6	IOCFGP5.7
A0D8	MFCFGP5.0	MFCFGP5.1	MFCFGP5.2	MFCFGP5.3	MFCFGP5.4	MFCFGP5.5	MFCFGP5.6	MFCFGP5.7
A0E8	PC6AL	PC6AH	PC6AT	-	PC7AL	PC7AH	PC7AT	SI2CDBGID
A0F8	PC3AL	РСЗАН	PC3AT	-	PC4AL	PC4AH	PC4AT	STEPCTRL

	0	1	2	3	4	5	6	7
A100	DISPDAT00-	DISPDAT01	DISPDAT02	DISPDAT03	DISPDAT04	DISPDAT05	DISPDAT06	DISPDAT07
A110	DISPDAT16-	DISPDAT17	DISPDAT18	DISPDAT19	DISPDAT20	DISPDAT21	DISPDAT22	DISPDAT23
A120	LCDCSL	LCDCSH	LCDCFGA	LCDCFGB	LCDCFGC	-	-	-
A130	TKCCFG	TKCAFG	TKCFFG	TKCATH0	TKCATH1	TKCATH2	-	-
A140	TKCTMR0	TKCTMR1	TKCTMR2	-	TKCVAL0	TKCVAL1	TKCVAL2	-
A150	TKCCFGII	TKCAFGII	TKCCMDII	TKCCNTL	TKCCNTH	-	-	-
A160	-	-	-	-	-	-	-	-
A170	-	-	-	-	-	-	-	-
	8	9	А	В	С	D	E	F
A108	DISPDAT08-	DISPDAT09	DISPDAT10	DISPDAT11	DISPDAT12	DISPDAT13	DISPDAT14	DISPDAT15
A118	DISPDAT24-	DISPDAT25	DISPDAT26	DISPDAT27	DISPDAT28	DISPDAT29	DISPDAT30	DISPDAT31
A128	BZFRQ	BZFMCFG	BZSNFMCT	BZCFG	BZSNMUTE	-	-	-
A138	CAPMVFT	CAPMVFH	CAPMVFM	CAPMVFL	CAPMVST	CAPMVSH	CAPMVSM	CAPMVSL
A148	TKCMVF0	TKCMVF1	TKCMVF2	-	TKCMVS0	TKCMVS1	TKCMVS2	-
A158	-	-	-	-	-	-	-	-
A168	-	-	-	-	-	-	-	-
A178	-	-	-	-	-	-	-	-

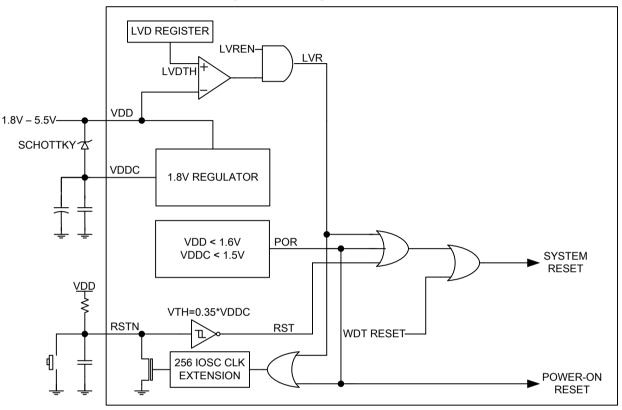

1. Enhanced 1-Cycle 8051 CPU

The CPU core is an enhanced version of standard 8051 used by series of ISSI MCU products. The CPU core is in RISC architecture and maintains binary instruction set compatible with the industry standard 8051. There is average 10 times performance enhancement in typical applications. The CPU operates at 20-bit addressing space that allows up to 1M bytes of program and data space for expansion. The CPU includes the following enhanced features compared with standard 8051:

- ◆ 16-bit LARGE addressing mode and 20-bit FLAT addressing mode control register ACON
- Two data pointers DPTR and DPTR1, and additional DPS, DPX, DPX1, MXAX registers for MOVX instruction
- 8-bit stack pointer for LARGE mode and 16-bit extended stack pointer for FLAT mode control register ESP
- Hardware Multiplication and Division Unit (MDU) provides 12 times faster performance using MD[5-0] and ARCON
- Programmable wait state for program space for on-chip flash memory using WTST register
- 256 Bytes of Direct Data Memory
- Enhanced Interrupt Controller allows 15 interrupt sources and 2 priority levels.
- Power Saving modes include IDLE mode, Power Management mode (PMM), and STOP mode. The PMM mode also supports switchback features.
- Access Control of critical registers TA, and TB registers
- Eight break pointers allows integration of common IDE

In addition to standard 8051 peripherals, the CPU core also integrates the following peripherals. These peripherals are in the same CPU clock domain.

- Six 8-Bit I/O ports
- 30-bit Watch Dog Timer. WDT, WDCON, and CKCON registers
- Three 16-bit Timers, T0/T1 and T2. TCON, RLDL, RLDH, TL2, TH2, and T2CON registers
- UART0.
- I²C Master Controller. I2CMSA, I2CMCR, I2CMBUF, and I2CMTP register.



The following sections describe in detail these enhanced features and peripherals. Assuming readers are familiar with 8051 standard operations and peripherals, the compatible functions is not covered here.

1.1 System Reset

After system reset, all registers resume the default value. The default value is shown in the register description. The reset conditions include power on/off reset, external RSTN pin being pulled low, low supply voltage detection reset, and WDT reset. The block diagram illustrating these reset conditions is shown as follows:

The power on/off reset (POR) is asserted when VDD is less than 1.6V or VDDC is less than 1.5V. The external RSTN pin can also generate reset to the device. In typical applications, the RSTN should have a resister (R1) connected to VDD and a capacitor (C1) to ground. For a system with a hardware reset control, there is usually a button switch connecting RSTN pin to ground. When the switch is pressed, it causes RSTN to short to ground, and the device enters reset state. The RSTN logic has a built-in filter that ignores RSTN duration shorter than 5usec. It is, therefore, recommended that RSTN needs to be actively pulled low for at least 50usec to guarantee a solid reset. The LVD circuits can detect the main supply voltage level VDD and the threshold can be adjusted. LVD reset is disabled by default, yet may be enabled by the software. The LVD output can be enabled to generate LVR (Low Voltage Reset). Both POR and LVR will also forces RSTN low. This ensures a solid and extended reset when the voltage supply to the internal logic and flash memory is lower than the rated level.

The last reset source is from the watchdog counter(WDT). The WDT reset function is enabled whenever a system reset occurs, and WDT timeout is set to maximum. It is recommended that all software should keep WDT enabled to ensure reliable software executions.

The program counter is loaded with 0x07000 after reset. This differs from standard 8051. In typical cases, 0x0F000 starts Calibration and ISP boot codes and then jumps to 0x0000. The clock selection after reset is set to using internal oscillator automatically. The IOSC is disabled only in STOP and SLEEP modes.

1.2 <u>CPU Registers</u>

ACC (0xE0) Accumulator R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		-	-	ACC	[7-0]	_		-	
WR		ACC[7-0]							

ACC is the CPU accumulator register and is involved in direct operations of many instructions. ACC is bit addressable.

B (0xF0) B Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	B[7-0]								
WR	B[7-0]								

B register is used in standard 8051 multiply and divide instructions and also used as an auxiliary register for temporary storage. B is also bit addressable.

PSW (0xD0) Program Status Word R/W (0x00)

	7	6	5	4	3	2	1	0
RD	CY	AC	FO	RS1	RS0	OV	UD	Р
WR	CY	AC	FO	RS1	RS0	OV	UD	Р

CY	Carry Flag
AC	Auxiliary Carry Flag (BCD Operations)
F0	General Purpose
RS1,RS0	Register Bank Select
OV	Overflow Flag
UD	User Defined (reserved)
Р	Parity Flag

SP (0x81) Stack Pointer R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		SP[7-0]								
WR		SP[7-0]								

PUSH will result ACC to be written to SP+1 address. POP will load ACC from IRAM with the address of SP.

ESP (0x9B) Extended Stack Pointer R/W (0x00)

	7 6 5 4 3 2 1 0								
RD	ESP[7-0]								
WR	ESP[7-0]								

In FLAT address mode, ESP and SP together form a 16-bit address for stack pointer. ESP holds the higher byte of the 16-bit address.

STATUS (0xC5) Program Status Word RO(0x00)

		grani Status V		<i>י</i> ן						
	7	6	5	4	3	2	1	0		
RD	-	HIP	LIP	-	SPTA1	SPRA1	SPTA0	SPRA0		
WR	-	-	-	-	-	-	-	-		
HIP High Priority Interrupt Status HIP=0 indicates no HP interrupt HIP=1 indicates HP interrupt progressing LIP Low Priority Interrupt Status LIP=0 indicates no LP interrupt LIP=1 indicates LP interrupt progressing										
SPTA1		UART1 Transmit Activity Status SPTA1=0 indicates no UART1 transmit activity SPTA1=1 indicates no UART1 transmit active								
SPRA1 UART1 Receive Activity Status SPRA1=0 indicates no UART1 receive activity										

SPRA1=1 indicates no UART1 receive active

SPTA0	UART0 Transmit Activity Status SPTA0=0 indicates no UART0 transmit activity
	SPTA0=1 indicates no UART0 transmit active
SPRA0	UART0 Receive Activity Status
	SPRA0=0 indicates no UART0 receive activity
	SPRA0=1 indicates no UART0 receive active

The program should check status conditions before entering SLEEP, STOP, IDLE, or PMM modes to prevent loss of intended functions from delayed entry until these events are finished.

1.3 Addressing Timing and Memory Modes

The clock speed of an MCU with embedded flash memory is usually limited by the access time of on-chip flash memory. While in modern process technology, the CPU can operate up to 100MHz to 200MHz, but the access time of flash memory is usually around 20 nanoseconds and thus limiting the clock rate to lower than 50MHz. To alleviate this problem, a programmable wait state function is incorporated to allow faster CPU clock rate however slower embedded flash memory. The wait state is controlled by WTST register as shown in the following,

WTST (0x92) R/W (0x07)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	WTST3	WTST2	WTST1	WTST0
WR	-	-	-	-	WTST3	WTST2	WTST1	WTST0

WTST is wait state register that controls the program access wait state only.

WTST[3-0] Wait State Control register. WTST sets the wait state in CPU clock period

Vall State Control	e in CPU clock pe	nou		
WTST3	WTST2	WTST1	WTST0	Wait State Cycle
0	0	0	0	1
0	0	0	1	2
0	0	1	0	3
0	0	1	1	4
0	1	0	0	5
0	1	0	1	6
0	1	1	0	7
0	1	1	1	8
1	0	0	0	9
1	0	0	1	10
1	0	1	0	11
1	0	1	1	12
1	1	0	0	13
1	1	0	1	14
1	1	1	0	15
1	1	1	1	16

The default setting of the program wait state register after reset is 0x07 and the software must initialize the setting to change the wait state setting. For typical embedded flash, the read access time is specified as 30 nsec. Therefore the user should set the WTST register according to the SYSCLK frequency. For example, using a SYSCLK of 4MHz, the WTST can be set to minimum because one clock period is 250 nsec which is longer than the embedded flash access time. If SYSCLK is above 16MHz, then WTST should be set higher than 1 to allow enough read access time.

MCON (0xC6) XRAM Relocation Register R/W (0x00) TA Protected

	7	6	5	4	3	2	1	0		
RD		MCON[7-0]								

۱/	۱/	D	
v	v	Г	

MCON[7-0]

MCON holds the starting address of XRAM in 4KB steps. For example, if MCON[7-0]=0x01, the starting address is 0x001000h. MCON is not meaningful in CS5523 because it only contains on-chip XRAM and MCON should not be modified from 0x00.

The LARGE mode, addressing mode is compatible with standard 8051 in 16-bit address. FLAT mode extends the program address to 20-bit and expands the stack space to 16-bit data space. The data space is always 16-bit in either LARGE or FLAT mode.

ACON (0x9D) R/W (0x00) TA

	7	6	5	4	3	2	1	0
RD	-	-	INTVSEL	-	DPXREN	SA	AM1	AM0
WR	-	-	INTVSEL	-	DPXREN	SA	AM1	AM0

ACON is addressing mode control register.

DPXREN	DPXR Register Control Bit.
	If DPXREN is 0, "MOVX, @Ri" instruction uses P2 (0xA0) registerand XRAM Address [15-8].
	If DPXREN is 1, DPXR (0xDA) register and XRAM Address [15-8] is used.
SA	Extended Stack Address Mode Indicator. This bit is read-only.
	0 – 8051 standard stack mode where stack resides in internal 256-byte memory
	1 – Extended stack mode. Stack pointer is ESP:SP in 16-bit addressing to data space.
AM1, AM0	AM1 and AM0 Address Mode Control Bits
	00 – LARGE address mode in 16-bit
	1x – FLAT address mode with 20-bit program address

1.4 MOVX A,@Ri Instructions

DPXR (0xDA) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	DPXR[7-0]							
WR	DPXR[7-0]							

DPXR is used to replace P2[7-0] for high byte of XRAM address bit[15-7] for "MOVX, @Ri" instructions only if DPXREN=1.

MXAX (0xEA) MOVX Extended Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		MXAX[7-0]								
WR	MXAX[7-0]									

MXAX is used to provide top 8-bit address for "MOVX @Ri" instructions only. MXAX does not affect other MOVX instructions.

When accessing XRAM using "MOVX, @DPTR" instruction, the address of XRAM access is formed by DPHi:DPLi depending on which data pointer is selected. Another form of MOVX instruction is "MOVX, @Ri". This instruction provides an efficient programming method to move content within a 256-byte data block. In "@RI" instruction, the XRAM address [15-7] can be derived from two sources. If ACON.DPXREN = 0, the high order address [15-8] is from P2 (0xA0), if ACON.DPXREN = 1, the high order address is from DPXR (0xDA) register.

The maximum addressing space of XRAM is up to 16MB thus requiring 24-bit address. For "MOVX, @DPTR", the XRAMADDR [23-16] is from either DPX (0x93) or DPX1 (0x95) depending on which data pointer is selected. For "MOVX, @Ri", the XRAMUADDR [23-16] is from MXAX (0xEA) register.

1.5 Dual Data Pointers and MOVX operations

In standard 8051/8052, there is only one data pointers DPH:DPL to perform MOVX. The enhanced CPU provides 2nd data pointer DPH1:DPL1 to speed up the movement, or copying of data block. The active DPTR is selected by setting DPS (Data Pointer Select) register. Through the control DPS, efficient programming can be achieved.

ID[1:0]

DPS (0x86) Data Pointer Select R/W (0x00)

	7	6	5	4	3	2	1	0
RD	ID1	ID0	TSL	-	-	-	-	SEL
WR	ID1	ID0	TSL	-	-	-	-	SEL

Define the operation of Increment Instruction of DPTR, "INC DPTR". Standard 8051 only have increment DPTR instruction. ID[1-0] changes the definitions of "INC DPTR" instruction and allows flexible modifications of DPTR when "INC DPTR" instructions is executed.

ID1	ID0	SEL=0	SEL=1
0	0	INC DPTR	INC DPTR1
0	1	DEC DPTR	INC DPTR1
1	0	INC DPTR	DEC DPTR1
1	1	DEC DPTR	DEC DPTR1

TSL Enable toggling selection of DPTR selection. When this bit is set, the selection of DPTR is toggled when DPTR is used in an instruction and executed. SEL DPTR selection bit. Set to select DPTR1, and clear to select DPTR. SEL is also affected by

DPTR selection bit. Set to select DPTR1, and clear to select DPTR. SEL is also affected by the state of ID[1:0] and TSL after DPTR is used in an instruction. When read, SEL reflects the current selection of command.

DPL (0x82) Data Pointer Low R/W (0x00)

	7	6	5	4	3	2	1	0
RD	DPL[7-0]							
WR		DPL[7-0]						

DPL register holds the low byte of data pointer, DPTR.

DPH (0x83) Data Pointer High R/W (0x00)

	7	6	5	4	3	2	1	0
RD	DPH[7-0]							
WR	DPH[7-0]							

DPH register holds the high byte of data pointer, DPTR.

DPL1 (0x84) Extended Data Pointer Low R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPL1[7-0]								
WR	DPL1[7-0]									

DPL1 register holds the low byte of extended data pointer 1, DPTR1.

DPH1 (0x85) Extended Data Pointer High R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPH1[7-0]								
WR	DPH1[7-0]									

DPH1 register holds the high byte of extended data pointer 1, DPTR1.

DPX (0x93) Data Pointer Top R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPX[7-0]								
WR		DPX[7-0]								

DPX is used to provide top 8-bit address of DPTR when address above 62KB. The lower 16-bit address is formed by DPH and DPL.DPX is not affected in Large mode, and will form full 24-bit address in Flat mode meaning auto increment and decrement when DPTR is changed. Since CS5523 only has on-chip data space, DPX value has no effect.

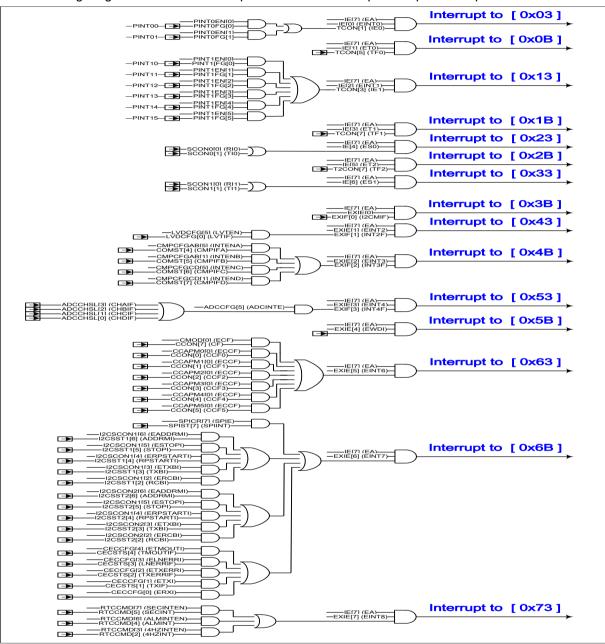
DPX1 (0x95) Extended Data Pointer Top R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		DPX1[7-0]								
WR	DPX1[7-0]									

DPX1 is used to provide top 8-bit address of DPTR when address above 64KB. The lower 16-bit address is formed by DPH1 and DP1L.DPX1 is not affected in Large mode, and will form full 24-bit address in Flat mode meaning auto increment and decrement when DPTR is changed. Since CS5523 only has on-chip data space, DPX1 value has no effect.

1.6 Interrupt System

The CPU implements an enhanced Interrupt Control that allows total 15 interrupt sources and each with two programmable priority levels. The interrupts are sampled at rising edge of SYSCLK. If interrupts are present and enabled, the CPU enters interrupt service routine by vectoring to the highest priority interrupt. Of the 15 interrupt sources, 7 of them are from CPU internal integrated peripherals, 6 of them are for on-chip external peripherals, and 2 of them are used for external pin interrupt expansion. When an interrupt is shared, the interrupt service routine must determine which source is requesting the interrupt by examining the corresponding interrupt flags of sharing peripherals.


The following table shows the interrupt sources and corresponding interrupt vectors. The Flag Reset column shows whether the corresponding interrupt flag is cleared by hardware (self-cleared) or software. Please note the software can only clear the interrupt flag but not set the interrupt flag. The Natural Priority column shows the inherent priority if more than one interrupts are assigned to the same priority level. Please note that the interrupts assigned with higher priority levels always get serviced first compared with interrupts assigned with lower priority levels regardless of the natural priority sequence.

Interrupt	Peripheral Source Description	Vectors INTVSEL=0/1	FLAG RESET	Natural Priority
PINT0	Expanded Pin INT0.x	0x0003/0xF003	Software	1
TF0	Timer 0	0x000B/0xF00B	Hardware	2
PINT1	Expanded Pin INT1.x	0x0013/0xF013	Software	3
TF1	Timer 1	0x001B/0xF01B	Hardware	4
TI0/RI0	UART0	0x0023/0xF023	Software	5
TF2	Timer 2	0x002B/0xF02B	Software	6
TI2/RI2	EUART2/LIN	0x0033/0xF033	Software	7
I2CM	I ² C Master	0x003B/0xF03B	Software	8
INT2	LVT/LVT18	0x0043/0xF043	Software	9
INT3	Comparator/EUART3/EUART4/ Remote-filter/Touch Key	0x004B/0xF04B	Software	10
INT4	ADC	0x0053/0xF053	Software	11
WDIF	Watchdog	0x005B/0xF05B	Software	12
INT6	PCA/CAPP/PWM0-1	0x0063/0xF063	Software	13
INT7	SPI/I2CS1/I2CS2	0x006B/0xF06B	Software	14
INT8	RTC/Timer 3/Timer 4/Timer 5/Buzzer	0x0073/0xF073	Software	15
BKP	Break Point	0xF080	Software	0
DBG	I2CS Debug	0xF0C0	Software	0

In addition to the 15 peripheral interrupts, there are two highest priority interrupts associated with debugging

and break point. DBG interrupt is generated when I²C slave is configured as a debug port and a debug request from the host matches the debug ID. BKP interrupt is generated when break point match condition occurs. DBG has higher priority than BKP. The BKP and DBG interrupts are not affected by global interrupt enable, EA bit, IE register (0xA8).

The following diagram shows the interrupt sources and the expanded pin interrupts

The interrupt related registers are listed in the following. Each interrupt can be individually enabled or disabled by setting or clearing corresponding bits in IE, EXIE and integrated peripherals' control registers.

IE (0xA8) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	EA	ES2	ET2	ES0	ET1	PINT1EN	ET0	PINT0EN
WR	EA	ES2	ET2	ES0	ET1	PINT1EN	ET0	PINT0EN
	EAGlobal Interrupt Enable bit.ES2LIN-capable16550-likeUART2 Interrupt Enable bit.ET2Timer 2 Interrupt Enable bit.							

ES0	UART0 Interrupt Enable bit.
ET1	Timer 1 Interrupt Enable bit.
PINT1EN	Pin PINT1.x Interrupt Enable bit.
ET0	Timer 0 Interrupt Enable bit.
PINT0EN	Pin PINT0.x Interrupt Enable bit.

EXIE (0xE8) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM
WR	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM
	EINT8 RTC Interrupt Enable and Timer 3 Interrupt Enable bit.							
EINT7 SPI and I ² C Slave Interrupt Enable bit.								
	EINT6	PCA Inter	rupt Enable bi	t.				
	EWD1 Watchdog Timer Interrupt Enable bit.							
EINT4 ADC/PWM Interrupt Enable bit.								
	EINT3 Analog Comparator Interrupt and CAN Interrupt Enable bit.							
EINT2 Low Voltage Detection Interrupt Enable bit.								

EI2CM I²C Master Interrupt Enable bit.

Each interrupt can be individually assigned to either high or low. When the corresponding bit is set to 1, it indicates it is of high priority.

IP (0xB8) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	PS2	PT2	PS0	PT1	PX1	PT0	PX0
WR	-	PS2	PT2	PS0	PT1	PX1	PT0	PX0

PS2	LIN-capable 16550-like UART2 Priority bit.
PT2	Timer 2 Priority bit.
PS0	UART 0 Priority bit.
PT1	Timer 1 Priority bit.
PX1	Pin Interrupt INT1 Priority bit.
PT0	Timer 0 Priority bit.
PX0	Pin Interrupt INT0 Priority bit.

EXIP (0xF8) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM
WR	EINT8	EINT7	EINT6	EWDI	EINT4	EINT3	EINT2	EI2CM

EI	NT8	INT8 RTC Priority and Timer 3 Priority bit.
El	NT7	INT7 SPI and I ² C Slave Priority bit.
EI	NT6	INT6 PCA Priority bit.
E٧	NDI	Watchdog Priority bit.
EI	NT4	INT4 ADC/PWM Priority bit.
EI	NT3	INT3 Analog Comparator and CAN Controller Priority bit.
EI	NT2	INT2 Low Voltage Detection Priority bit.
EL	2CM	I ² C Master Priority bit.

EXIF (0x91) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	INT8F	INT7F	INT6F	-	INT4F	INT3F	INT2F	I2CMIF
WR	-	-	-	-	-	-	-	I2CMIF
INT8F INT8 RTC and Timer 3 INT7F INT7 SPI and I ² C Slav INT6F INT6 PCA Interrupt Fla				interrupt Flag				

INT4F	INT4 ADC/PWM Interrupt Flag bit
INT3F	INT3 Analog Comparator Interrupt and CAN Interrupt Flag bit
INT2F	INT2 Low Voltage Detection Interrupt Flag bit
I2CMIF	I ² C Master Interrupt Flag bit. This bit must be cleared by software
***	Writing to INT2F to INT8F has no effect.

The interrupt flag of internal peripherals are stored in the corresponding flag registers in the peripheral and EXIF registers. These peripherals include T0, T1, T2, and WDT. Therefore to clear the interrupt flags the software needs to clear the corresponding flags located in the peripherals (for T0, T1, and T2, and WDT). For I2CM, the interrupt flag is located in the EXIF register bit I2CMIF. This needs to be cleared by software.

INT2 to INT8 are used to connect to the external peripherals. INT2F to INT8F are direct equivalents of the interrupt flags from the corresponding peripherals. These peripherals include RTC, I²Cs, PCA, ADC, etc. Take RTC for example; there are interrupt flags (SECINT, ALMINT, and 4HZINT) in RTCCMD register. The RTC interrupt is connected to INT8. When either one or more of SECINT, ALMINT, and 4HZINT of RTC is set, i.e., INT8F = (SECINT + ALMINT + 4HZINT), INT8F is set to 1.Software is required for clearing the origin of the interrupt flag in the RTC before exiting the service routine. In this example, if the service routine only clears one interrupt flag, i.e. SECINT but not ALMINT. After exiting, INT8F is still set and results in a re-entry of the interrupt service routine and then the service routine can take care of ALMINT.

PINT0 and PINT1 are used for external GPIO pin Interrupts. All GPIO pin can be enabled to generate the PINT0 or PINT1 depending on its MFCFG register setting. Each GPIO pin also contains the rising/falling edge detections and either or both edges can be used for interrupt triggering. The same signaling can be used for generating wake-up.

	7	6	5	4	3	2	1	0			
RD	TF1	TR1	TF0	TR0	PINT1F	PINT1EG	PINT0F	PINT0EG			
WR	TF1	TR1	TF0	TR0	PINT1F	PINT1EG	PINT0F	PINT0EG			
	TF1 Timer 1 Overflow Interrupt Flag bit. TF1 is cleare TF1 can also be cleared by software.					/ hardware wh	en entering IS	SR.			
	TR1					clear to disabl					
	TF0			•	0 is cleared by	/ hardware wh	en entering IS	SR.			
		TF0 can al	so be cleared	by software.							
	TR0	Timer 0 Ru	n Control bit.	Set to enable	Timer 0, and	clear to disabl	e Timer 0.				
	PINT1F	Pin Interrupt 1 Flag									
		PINT1F is set to 1 by hardware when pin interrupt occurs. PINT1F is cleared by hardware when entering PINT1 ISR. PINT1F can also be cleared by software. The interrupt flag of corresponding triggering pin located in PIOEDGx registers must be cleared by software.									
	PINT1EG	PINT1EG	In Interrupt 1 Edge or Level Setting PINT1EG=0 use level interrupt, and PINT1EG=1 use edge interrupt. In current implementations, PINT1EG must be set to 0 to ensure capture of interrupt.								
	PINT00F	Pin Interru	pt 0 Flag								
	PINT0EG	PINTOF is set to 1 by hardware when pin interrupt occurs. PINTOF is cleared by hardware when entering PINTO ISR. PINTOF can also be cleared by software. The interrupt flag of corresponding triggering pin located in PIOEDGx registers must be cleared by software.									
		PINT0EG	=0 use level ir	iterrupt, and F		PINT0EG In Interrupt 0 Edge or Level Setting PINT0EG=0 use level interrupt, and PINT0EG=1 use edge interrupt. In current implementations, PINT0EG must be set to 0 to ensure capture of interrupt.					

TCON (0x88) Timer 0 and Timer 1 Configuration Register R/W (0x00)

1.7 <u>Register Access Control</u>

One important aspect of the embedded MCU is its reliable operations under a harsh environment. Many system failures result from the accidental loss of data or changes of critical registers that may lead to catastrophic effects. The CPU provides several protection mechanisms, which are described in this section.

TA (0xC7) Time Access A Control Register2 WO xxxxxx0

7	6	5	4	3	2	1	0

RD	-	-	-	-	-	-	-	TASTAT
WR				TA Re	egister			

TA access control emulates a ticket that must be purchased before modifying a critical register. To modify or write into a TA protected register, TA must be accessed in a predefined sequence to obtain the ticket. The ticket is used when an intended modification operation is done to the TA protected register. To obtain the next access a new ticket must be obtained again by performing the same predefined sequence on TA. TA does not limit the read access of the TA protected registers. The TA protected register includes WDCON (0xD8), MCON (0xC6), and ACON (0x9D) registers. The following predefined sequence is required to modify the content of MCON.

MOV TA, #0xAA;

MOV TA, #0x55;

MOV MCON, #0x01;

Once the access is granted, there is no time limitation of the access. The access is voided if any operation is performed in TA address. When read, the bit of TA indicates whether TA is locked or not (1 indicates "unlock" and 0 indicates "lock").

TB (0xC9) Time Access B Control Register2 RW (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	TBSTAT
WR		TB Register						

TB access control functions are similar to TA control, except the ticket is for multiple uses with a time limit. Once access is granted, the access is open for 256 clock periods and then expires. The software can also read TB address to obtain the current TB status. The TB protected registers include two SFR registers, CKSEL (0x8F) and WKMASK (0x9F), and twelve XFR registers lodging REGTRM (0xA000), IOSCITRM (0xA001), IOSCVTRM (0xA002), LVDCFG (0xA010), LVDTHD (0xA011), CNTPCTL (0xA025), CNTPCTH (0xA026), INTPCT1 (0xA013), INTPCT2 (0xA014), BPINTE (0xA0E1), and SI2C_DebugID (0xA0EF). To modify registers with TB protection, the following procedure must be performed.

MOV TB, #0xAA

MOV TB, #0x55

This action creates a timed window of 256 SYSCLK periods to allow write access of these TB protected registers. If any before-mentioned sequences are repeated before the 128 cycles expires, a new 128 cycles is extended. The current 256 cycles can be terminated immediately by writing #0x00 to TB registers, such as

MOV TB, #0x00

It is recommended to terminate the TB access window once the user program finishes the modifications of TB protected registers.

Because TA and TB are critical reassurance of the reliable operation of the MCU that prevents accidental hazardous uncontrollable modifications of critical registers, the operation of these two registers should bear extreme cautions. It is strongly advised that these two registers should be turned on only when needed. Both registers use synchronous CPU clock, therefore it is imperative that any running tasks of TA and TB should be terminated before entering IDLE mode or STOP mode. Both modes turn off the CPU clock and if TA and TB are enabled, they stay enabled until the CPU clock resumes thus may create vulnerabilities for critical registers.

Another reliability concern of embedded Flash MCU is that the important content on the Flash can be accidentally erased. This concern is addressed by the content protection in the Flash controller.

1.8 <u>Clock Control and Power Management Modes</u>

This section describes the clock control and power saving modes of the CPU and its integrated peripherals. The settings are controlled by PCON (0x87) and PMR (0xC4) registers. The register description is defined as following.

PCON (0x87) R/W (0x00)

	7	6	5	4	3	2	1	0
RD	SMOD0	-	-	-	-	-	-	-
WR	SMOD0	-	-	-	-	SLEEP	STOP	IDLE

SMOD0	UART 0 Baud Rate Control. This is used to select double baud rate in mode 1, 2 or 3 for UART0 using Timer 1 overflow. This definition is the same as standard 8051.
SLEEP	Sleep Mode Control Bit. When this bit and the Stop bit are set to 1, the clock of the CPU and all peripherals is disabled and enters SLEEP mode. The SLEEP mode exits when non- clocked interrupts or resets occur. Upon exiting SLEEP mode, Sleep bit and Stop bit in PCON is automatically cleared. In terms of power consumption, the following relationship applies: IDLE mode > STOP mode > SLEEP mode. In essence, SLEEP mode is the same as STOP mode, except it also turns off the band gap and the regulator. It uses a very low power back-up regulator (< 5uA). When waking up from SLEEP mode, it takes longer time (< 64 IOSC clock cycles, compared with STOP mode) because the regulator requires more time to stabilize.
STOP	Stop Mode Control Bit. The clock of the CPU and all peripherals is disabled and enters STOP mode if the Sleep bit is in the reset state. The STOP mode can only be terminated by non-clocked interrupts or resets. Upon exiting STOP mode, Stop bit in PCON is automatically cleared.
IDLE	Idle Bit. If the IDLE bit is set, the system goes into IDLE mode. In Idle mode, CPU clock becomes inactive and the CPU and its integrated peripherals such as WDT, T0/T1/T2, and UART0 arrest. But the clocks of external peripherals and CPU like PCA, ADC, LIN-capable16550-likeUART2, SPI, T3, I ² C slave and the others are still active. This allows the interrupts generated by these peripherals and external interrupts to wake the CPU. The exit mechanism of IDLE mode is the same as STOP mode. Idle bit is automatically cleared at the exit of the IDLE mode.

PMR (0xC4) R/W (010xxxxx)

	7	6	5	4	3	2	1	0
RD	CD1	CD0	SWB	-	-	-	-	-
WR	CD1	CD0	SWB	-	-	-	-	-
	CD1, CD0	CD1=0, fu mode whe	Ill speed operation of the speed operation operation of the speed operation	ation is in effe ts integrated p	bits control the ct. When CD0 peripherals operipherals such a	=1, and CD1= erate at a cloc	=1, the CPU e k rate divided	nters PMM by 257. Note

that in PMM mode, all integrated peripherals such as UAR10, LIN-capable 16550-like UART2, WDT, and T0/T1/T2 run at this reduced rate, thus may not function properly. All external peripherals to CPU still operate at full speed in PMM mode. Switch Back Control bit. Setting this bit allows the actions to occur in integrated peripherals

SWB

CKSEL (0x8F) R/W (0x9C) System Clock Selection Register TB Protected

				-				
	7	6	5	4	3	2	1	0
RD	IOSCDIV[3-0]						CLKSEL[1]	CLKSEL[0]
WR		IOSCDIV[3-0]				REGRDY[0]	CLKSEL[1]	CLKSEL[0]

to automatically switch back to normal operation mode.

IOSCDIV[3-0] IOSC Pre-Divider

DSC Pre-Divider	
IOSCDIV[3-0]	SYSCLK
0	IOSC
1	IOSC/2
2	IOSC/4
3	IOSC/6
4	IOSC/8
5	IOSC/10
6	IOSC/12
7	IOSC/14
8	IOSC/16

9	IOSC/32
10	IOSC/64
11	IOSC/128
12	IOSC/256
13	IOSC/512
14	IOSC/1024
15	IOSC/2048

REGRDY[1-0] Wake up delay time for main regulator stable time from reset or from sleep mode wakeup

REGRDY[1]	REGRDY[0]	Delay time
0	0	16 SIOSC cycle
0	1	32 SIOSC cycle
1	0	64 SIOSC cycle
1	1	128 SIOSC cycle

CLKSEL[1-0] Clock Source Selection

These two bits define the clock source of the system clock SYSCLK. The selections are shown in the following table. The default setting after reset is IOSC.

CLKSEL[1]	CLKSEL[0]	SYSCLK
0	0	IOSC (through divider)
0	1	SOSC
1	0	RTC
1	1	PLL

WKMASK (0x9F) R/W (0xFF) Wake Up Mask Register TB Protected

	7	6	5	4	3	2	1	0
RD	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
WR	WEINT8	WEINT7	WEINT6	WEINT4	WEINT3	WEINT2	WEPINT1	WEPINT0
	WEINT8 WEINT7 WEINT6 WEINT4 WEINT3	Set this bi Set this bi Set this bi	t to allow INT t to allow INT t to allow INT	7 to trigger the 6 to trigger the 4 to trigger the	wake up of C wake up of C	PU from STC PU from STC PU from STC	P modes. P modes. P modes.	

WEINT2 Set this bit to allow INT2 to trigger the wake up of CPU from STOP modes.

WEPINT1 Set this bit to allow INT1 to trigger the wake up of CPU from STOP modes.

WEPINT0 Set this bit to allow INT0 to trigger the wake up of CPU from STOP modes.

WKMASK register defines the wake up control of the interrupt signals from the STOP mode. The wake-up is performed by these interrupts and if enabled the internal oscillator is turned on and SYSCLK resumes. The interrupt can be set as a level trigger or an edge trigger and the wake-up always runs in accordance with the edge. Please note the wake-up control is wired separately from the interrupt logic, therefore, after waking up, the CPU does not necessarily enter the interrupt service routine if the corresponding interrupt is not enabled. In this case, the CPU continues onto the next instruction, which initiates the STOP mode. Extra attention should be exerted as designing the exit and re-entry of modes to ensure proper operation.

Please note that all clocks are stopped in STOP mode, therefore peripherals require clock such as I²C slave, UARTx, ADC, LVD, and T3 cannot perform wake-up function. Only external pins and peripherals that do not require a clock can be used for wake up purposes. Such peripherals in CS5523 are an analog comparator and a RTC.

1.8.1 PMM mode

PMM mode is enabled by setting CD[1:0] bits in PMR register to both 1. In PMM mode, the CPU and its integrated peripheral such as WDT, UARTO, LIN-capable 16550-like UART2, T0/T1/T2, T3, and I²C Master operate at 257 times slower than SYSCLK. All other external peripherals such as PCA, ADC etc. are still operating under normal clock. The PMM mode saves power because the CPU, internal Flash memory and SRAM by operating at much slower frequency. The program continues to run while the CPU is operating at a reduced rate. To further save power, the unused external peripherals can be turned off or disabled. Normal mode operation can be recovered from PMM mode by program itself that set CD[1:0] = 01. Another way of recovery is to enable the SWITCHBACK function by setting SWB bit to high in PMR register. When switchback is enabled, the following conditions trigger the CPU to exit PMM mode and resume normal operations.

External Interrupt INT0/1/2/3/4/6/7/8 and any external peripherals interrupt OR-ED with these interrupts.

UART0 receive Start bit detection

UART0 transmit buffer loaded

When an external interrupt is intended to perform switchback, the corresponding interrupt must be enabled and not blocked by higher priority interrupts. In the case of UART-triggered switchback, the triggering is not generated by the UART-associated interrupt. This is because UART operating under PMM mode may not operate correctly to receive or transmit data. The switchback is thus initiated by the reception of the falling edge of the Start bit. The UART receive switchback is enabled only if the associated receive bit (SCON0.4 or SCON1.4) is set. The UART transmit initiated switchback is triggered when UART transmit buffer is loaded. Thus CPU operating under PMM mode recovers to normal mode automatically when it writes in the transmit buffer. Once it recovers, UART operates under normal frequency to correctly transmit the data.

The return of PMM mode after switchback must be activated manually with software. The exit of PMM mode occurs when WDT or external RSTN resets.

Since the purpose of the PMM mode is to save power consumption, the internal oscillator clock IOSC is recommended to be used as the system clock as IOSC consumes significantly less power than the crystal oscillator.

1.8.2 IDLE Mode

IDLE mode provides a further power saving than PMM mode by stopping the clock for CPU and its integrated peripherals while keeping the external peripherals at normal operating conditions. The external peripherals still function normally thus can generate interrupts that wake up the CPU from IDLE mode. The IDLE mode is introduced by setting Idle bit to 1.

When the CPU is in idle mode, no processing is possible. All integrated internal peripherals such as T0/T1/T2, UART0, LIN-capable 16550-likeUART2, and I²C Master are inaccessible during idling.. The IDLE mode can be excited by hardware reset through RSTN pin or by external interrupts as well as the interrupts from external peripherals that are OR-ed with the external interrupts. The triggering external interrupts need be enabled properly. Upon exiting from IDLE mode, the CPU resumes operation as the clock is being turned on. CPU immediately vectors to the interrupt service routine of the corresponding interrupt sources that wake up the CPU. When the interrupt service routine completes, RETI returns to the program and immediately follows the one that invokes the IDLE mode. Upon returning from IDLE mode to normal mode, Idle bit in PCON is automatically cleared.. As the purpose of the IDLE mode is to save power, the use of IOSC clock is strongly recommended in place of SYSCLK before entering IDLE mode since it consumes significantly less power than the crystal oscillator or other clock sources.

1.8.3 STOP Mode

STOP mode provides the lowest power consumption by stopping clocks to all components in the system. STOP mode is entered by setting STOP=1. To achieve minimum power consumption, before entering STOP mode, it is essential to turn off all peripherals and the current operating clock oscillators such as crystal oscillator and PLL. It is also important that the software switches to the IOSC clock and disables all other clock generators such as crystal oscillator or PLL clock generator before entering STOP mode. This is critical to ensure a smooth transition when resuming its normal operations. Selecting other clock sources, such as XTAL oscillator or PLL clock as CPU system clock may burden the system as the clock sources may take a significant amount of time to stabilize during the wakeup. Upon entering STOP mode, the system uses the last edge of IOSC clock to shut down the IOSC clock generator. The minimum power consumption state is achieved through this mechanism.

Hardware reset through RSTN pin or by interrupts generated via external pins (INT0 and INT1) or INT2 to INT8 brings the system out of STOP mode. Since all clocks are inactive, none of the peripherals like UART, Timers, I²C master and slave, ADC, or LVD contribute to the exit of STOP mode. Peripherals like Analog comparator and

RTC interrupt; however, can be used to trigger the exit of STOP mode as they are implemented asynchronously or their own clock sources.

The triggering interrupt source must be enabled and its Wake-up bit is set in the WKMASK register. External pins require LOW-level triggers; however the INT flags of on-chip external peripherals require HIGH-level triggers. The IOSC circuit is activated by triggering event and the CPU is woken up at the first IOSC clock edge. Please note that the IOSC is activated as soon as STOP mode exits. As CPU resumes the normal operation using the IOSC clock when an interrupt presents, the CPU immediately vectors to the interrupting service routine of the corresponding interrupt source. When the interrupt service routine completes, RETI returns to the program immediately to execute the instruction that invokes the STOP mode. The Stop bit in PCON is automatically cleared by hardware reset during the waking up.

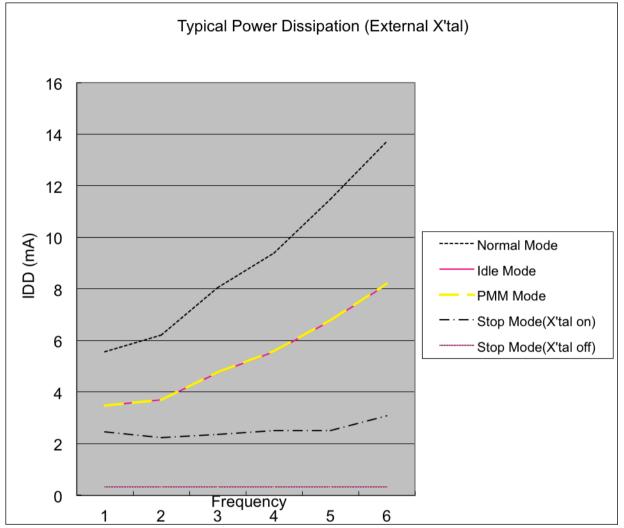
Please note the wake-up control WKMASK register and interrupt enable registers IE and EXIE which are specifically responsible for the wake-up and interrupt. Extra attention should be taken while programming for coherent application design. In STOP mode, clocks of CPU and peripherals are disabled (except RTC). Therefore only external pins and peripherals such as analog comparator and RTC that do not require clock can be used to initiate the wake-up process. Peripherals such as UART, Timers, I²C master and slave, ADC, or LVD can not generate wake-up interrupt in this mode.

1.8.4 SLEEP Mode

In STOP mode, the main regulator providing 1.8V (VDDC) to internal logic, memory and flash circuits are still active. The regulator and its internal Bandgap reference circuits consumes approximately about 200uA. SLEEP mode is used to further reduce the standby power through turning off the regulator and reference circuits. The logic behavior of SLEEP mode is the same as STOP mode and is entered by setting both STOP and SLEEP bits to 1 in PCON register. In SLEEP mode, a very low-power back-up regulator is used to provide supply voltage to the internal logic, memory and flash circuits. The back-up regulator consumes about 10uA to 20uA, and can supply up to 1mA of load. The output voltage of the back-up regulator is lower than the main regulator, and typically is around 1.45V.

The exit of SLEEP mode is the same as exit of STOP mode by wake-up events, and exits directly back to normal operation and the main regulator is turned on. Note the enabling time of the main regulator is about 10usec, therefore, after wake-up from SLEEP mode, the software should be kept at NOP for at least 20usec before resuming. It is also recommended that if SLEEP mode is used, the decoupling capacitor on VDDC should contains at least 10uF.

1.8.5 Clock Control


The clock selection is defined by CKSEL register (0x8F). An IOSC is a critical component in MCU although not integrated in the CPU core. It is enabled except in STOP mode. An IOSC also handles critical timing conformance for flash programming and the default manufactured calibrated IOSC is set at 16MHz. Although users can manually reset the IOSC frequency but reset value should not deviate more than 50% from its typical setting to avoid flash performance problems.

An IOSC is recommended that for the transition of clock-source-switching to ensure a smooth and glitch-free transition. This is also true for switching among different power saving modes. Please note that when waking up from STOP mode, the clock selection is switched automatically to IOSC. If other clock sources are preferred, optional configurations are available through software set-up.

When switching clock sources, it is also important to note the crystal oscillator, real time clock and the phase lock loop take a significant amount of time to stabilize. The software needs to be designed to turn on the corresponding clock source first and wait for the stabilization time before CKSEL settings take place.

The typical power dissipation relationship to the CPU frequency is shown in the following graph.

The values of performance frequency in IDLE and PMM modes are close therefore the lines appear overlapped in the graph.

The IDD result does not include the power dissipation of the clock oscillator. The graph shows that during normal operation, the power dissipation increases approximately at ~0.36mA/MHz; in idle mode it increases at about ~0.2mA/MHz (the power dissipation still increases as the frequency increases due to operation of peripheral clock).

WARNING: If an unavailable clock source is being selected, it may cause the system to hang. There is NO hardware protection against this peril. Therefore extreme precautions must be exerted during programming.

1.9 Break Point Controller

The CPU core also includes a Break Point Controller for software debugging purposes and handling exceptions. Program Counter break point triggers at PC address matching, and there are seven PC matching settings available. Single Step break point triggers at interaction return from an interrupt routine.

Upon the matching of break point conditions, the Break Point Controller issues BKP Interrupt for handling the break points. The BKP Interrupt vector is located at 0x7B. Upon entering the BKP ISR (Break Point Interrupt Service Routine), all interrupts and counters (WDT, T0, T1, and T2) are disabled. To allow further interrupts and continuing counting, the BKP ISR must be enabled. At the exiting, the BKP ISR setting must be restored to resume normal operations.

	7	6	5	4	3	2	1	0
RD	STEP_IF	PC7IF	PC6IF	PC5IF	PC4IF	PC3IF	PC2IF	PC1IF
WR	STEP_IF	PC7IF	PC6IF	PC5IF	PC4IF	PC3IF	PC2IF	PC1IF

STEP IF

This register is for reading the Break Points interrupt flags.

This bit is set when the Break Point conditions set by a new instruction fetching from an interrupt routine. This bit must be cleared by software.

PC7IF – PC1IF These bits are set when Break Point conditions are set by PC7 – PC1 address. These bits must be cleared by software.

BPINTE (A0E1h) Break Point Interrupt Enable Register R/W (0x00) TB Protected

	7	6	5	4	3	2	1	0
RD	STEP_IE	PC7IE	PC6IE	PC5IE	PC4IE	PC3IE	PC2IE	PC1IE
WR	STEP_IE	PC7IE	PC6IE	PC5IE	PC4IE	PC3IE	PC2IE	PC1IE

This register controls the enabling of individual Break Points interrupt.

STEP_IE Set this bit to enable Single Step event break point interrupt.

PC7IE – PC1IE Set these bits to enable PC7 to PC1 address match break point interrupts.

BPINTC (A0E2h) Break Point Interrupt Control Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	-
WR	-	-	-	-	-	-	-	-

This register is reserved for other applications.

BPCTRL (A0E3h) DBG and BKP ISR Control and Status Register R/W (b'11111100)

	7	6	5	4	3	2	1	0
RD	DBGINTEN	DBGWDTEN	DBGT2EN	DBGT1EN	DBGT0EN	-	-	DBGGST
WR	DBGINTEN	DBGWDTEN	DBGT2EN	DBGT1EN	DBGT0EN	-	-	DBGGST

When entering the DBG or BKP ISR (Interrupt Service Routine), all interrupts and timers are disabled. The enabled bits are cleared by hardware reset in this register. As the interrupts and timers are disabled, the ISR can process debugging requirement in a suspended state. If a specific timer should be kept active, it must be enabled by ISR after ISR entry. Before exit of DBG and BKP ISR, the control bits should be enabled to allow the timers to resume operating. This register should be modified only in Debug ISR.

DBGINTEN	Set this bit to enable all interrupts (except WDT interrupt). This bit is cleared automatically
	at the entry of DBG and BKP ISR. Set this bit to allow ISR to be further interrupted by other
	interrupts. This is sometimes necessary if DBG or BKP ISR needs to use UART or I ² C, for
	example.

DBGWDEN Set this bit to allow WDT counting during the BKP ISR. This bit should always be set before exiting the ISR.

- DBGT2EN Set this bit to allow T2 counting during the BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T2 interrupt.
- DBGT1EN Set this bit to allow T1 counting during the BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T1 interrupt.

DBGT0EN Set this bit to allow T0 counting during the BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T0 interrupt.

DBGST This bit indicates the DBG and BKP ISR status. This bit is set to 1 when entering DBG and BKP ISR. This signal should be cleared when exiting the DBG and BKP ISR. Checking this bit allows other interrupt routine to determine whether it is a sub-service of the DBG and BKP ISR.

PC1AL (A0F0h) Program Counter Break Point 1 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD	PC1AL[7-0]									
WR	PC1AL[7-0]									

This register defines the PC low address for PC match break point 1.

PC1AH (A0F1h) Program Counter Break Point 1 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD	PC1AH[7-0]									
WR	PC1AH[7-0]									

This register defines the PC high address for PC match break point 1.

PC1AT (A0F2h) Program Counter Break Point 1 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0			
RD	PC1AT[7-0]										
WR		PC1AT[7-0]									

This register defines the PC top address for PC match break point 1. PC1AT:PC1HT:PC1LT together form a 24 bit compare value of break point 1 for Program Counter.

PC2AL (A0F4h) Program Counter Break Point 2 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD	PC2AL[7-0]									
WR	PC2AL[7-0]									

This register defines the PC low address for PC match break point 2.

PC2AH (A0F5h) Program Counter Break Point 2 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC2AH[7-0]								
WR		PC2AH[7-0]								

This register defines the PC high address for PC match break point 2.

PC2AT (A0F6h) Program Counter Break Point 2 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0	
RD		PC2AT[7-0]							
WR		PC2AT[7-0]							

This register defines the PC top address for PC match break point 2 PC2AT:PC2HT:PC2LT together form a 24-bit compare value of PC break point 2 for Program Counter.

PC3AL (A0F8h) Program Counter Break Point 3 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0	
RD		PC3AL[7-0]							
WR		PC3AL[7-0]							

This register defines the PC low address for PC match break point 3.

PC3AH (A0F9h) Program Counter Break Point 3 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0	
RD		PC3AH[7-0]							
WR		PC3AH[7-0]							

This register defines the PC high address for PC match break point 3.

PC3AT (A0FAh) Program Counter Break Point 3 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0
RD				PC3A	T[7-0]			

WR

PC3AT[7-0]

This register defines the PC top address for PC match break point 3. PC3AT:PC3HT:PC3LT together form a 24-bit compare value of break point 3 for Program Counter.

PC4AL (A0FCh) Program Counter Break Point 4 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC4AL[7-0]								
WR		PC4AL[7-0]								

This register defines the PC low address for PC match break point 4.

PC4AH (A0FDh) Program Counter Break Point 4 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0	
RD		PC4AH[7-0]							
WR		PC4AH[7-0]							

This register defines the PC high address for PC match break point 4.

PC4AT (A0FEh) Program Counter Break Point 4 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC4AT[7-0]								
WR		PC4AT[7-0]								

This register defines the PC top address for PC match break point 4. PC4AT:PC4HT:PC4LT together form a24-bit compare value of break point 4 for Program Counter.

PC5AL (A0E4h) Program Counter Break Point 5 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0	
RD		PC5AL[7-0]							
WR		PC5AL[7-0]							

This register defines the PC low address for PC match break point 5.

PC5AH (A0E5h) Program Counter Break Point 5 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC5AH[7-0]								
WR		PC5AH[7-0]								

This register defines the PC high address for PC match break point 5.

PC5AT (A0E6h) Program Counter Break Point 5 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC5AT[7-0]								
WR		PC5AT[7-0]								

This register defines the PC top address for PC match break point 5. PC5AT:PC5HT:PC5LT together form a24-bit compare value of break point 5 for Program Counter.

PC6AL (A0E8h) Program Counter Break Point 6 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC6AL[7-0]								
WR		PC6AL[7-0]								

This register defines the PC low address for PC match break point 6.

PC6AH (A0E9h) Program Counter Break Point 6 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0			
RD		PC6AH[7-0]									
WR		PC6AH[7-0]									

This register defines the PC high address for PC match break point 6.

PC6AT (A0EAh) Program Counter Break Point 6 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0			
RD		PC6AT[7-0]									
WR		PC6AT[7-0]									

This register defines the PC top address for PC match break point 6 PC6AT:PC6HT:PC6LT together form a24-bit compare value of PC break point 6 for Program Counter.

PC7AL (A0ECh) Program Counter Break Point 7 Low Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC7AL[7-0]								
WR		PC7AL[7-0]								

This register defines the PC low address for PC match break point 7.

PC7AH (A0EDh) Program Counter Break Point 7 High Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0			
RD		PC7AH[7-0]									
WR		PC7AH[7-0]									

This register defines the PC high address for PC match break point 7.

PC7AT (A0EEh) Program Counter Break Point 7 Top Address Register R/W (b'00000000)

	7	6	5	4	3	2	1	0		
RD		PC7AT[7-0]								
WR		PC7AT[7-0]								

This register defines the PC top address for PC match break point 7. PC7AT:PC7HT:PC7LT together form a24-bit compare value of break point 7 for Program Counter.

Host or program can obtain the status of the break point controller through the current break point address and next PC address register. DBPCID[23-0] contains the PC address of just executed instruction when the break point occurs. DBNXPC[23-0] contains the next PC address to be executed when the break point occurs, therefore, it is usually exactly the same value of the break pointer setting.

DBPCIDL (A098h)Debug Program Counter Address Low Register RO (b'00000000)

	7	6	5	4	3	2	1	0		
RD		DBPCID[7-0]								
WR		-								

DBPCIDH (A099h)Debug Program Counter Address High Register RO (b'00000000)

	7 6 5 4 3 2 1 0											
RD				DBPCI	D[15-8]							
WR	-											
DBPCID	T (A09Ah)De	ebug Program	n Counter Ad	ldress Top R	egister RO (I	b'0000000)						
			_	_		_	_					

		7	6	5	4	3	2	1	0
--	--	---	---	---	---	---	---	---	---

RD	DBPCID[23-16]
WR	-

DBPCNXL (A09Bh)Debug Program Counter Next Address Low Register RO (b'0000000)

	7 6 5 4 3 2 1 0 DBPCNX[7-0]									
RD	DBPCNX[7-0]									
WR					-					

DBPCNXH (A09Ch)Debug Program Counter Next Address High Register RO (b'00000000)

	7	6	5	4	3	2	1	0			
RD		DBPCNX[15-8]									
WR		-									

DBPCNXT (A09Dh)Debug Program Counter Next Address Top Register RO (b'00000000)

	7	6	5	4	3	2	1	0		
RD		DBPCNX[23-16]								
WR		-								

STEPCTRL (A0FFh) Single Step Control Enable Register R/W (b'0000000)

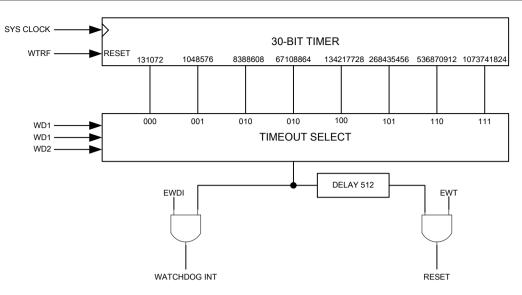
	7	6	5	4	3	2	1	0	
RD		STEPCTRL[7-0]							
WR			:	STEPCTRL[7-0]				

To enable single-step debugging, STEPCTRL must be written with value 0x96.

Debug I²C Port 1.10

The I²C Slave 2 (I2CS2) can be configured as the debug and ISP port for CS5523. This is achieved by assigning a predefined debug ID for the I²CSlave address. When a host issues an I²C access to this special address. a DBG interrupt is generated. DBG Interrupt has the highest priority. The DBG interrupt vector is located at 0x83. DBG ISR is used to communicate with the host and is usually closely associated with BKP ISR.

SI2CDBGID (A0EFh)Slave I²C Debug ID Register R/W (b'00110110) TB Protected


		7	6	5	4	3	2	1	0	
F	RD	DBGSI2C2EN		SI2CDBGID[6:0]						
V	٧R	DBGSI2C2EN		SI2CDBGID[6:0]						

DBGSI2C2EN DBGSI2C2EN=1 enables I2CS2 as debug port. When I2CS2 receives an access of I²C address matching SI2CDBGID[6:0], a debug interrupt is generated. SI2CDBGID[6:0] Slave I²C ID address for debug function.

1.11 Watchdog Timer

The Watchdog Timer is a 30-bit timer that can be used by a system supervisor or as an event timer. The Watchdog timer can be used to generate an interrupt or to issue a system reset depending on the control settings. This section describes the register related to the operation of Watchdog Timer and its functions. The following diagram shows the structure of the Watchdog Timer. Note WDT shares the same clock with the CPU, thus WDT is disabled in IDLE mode or STOP mode however it runs at a reduced rate in PMM mode.

WDCON (0xD8) R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	-	-	-	-	WDIF	WTRF	EWT	-		
WR	-	-	-	-	WDIF	WTRF	EWT	RWT		
	WDIF WTRF	interrupt is enabled or not. Note the WDT interrupt enable control is located in EIE (0xE8).4 EWDI bit. It must be cleared by software								
	EWT			t Enable bit. S nabled and W			•	unction. The		
default WDT reset is enabled and WDT timeout is set to maximum.RWTReset the Watchdog timer. Writing 1 to RWT resets the WDT timer. RWT bit is not a register and does not hold any value. The clearing action of Watchdog timer is protected by TA access. In another word, to clear Watchdog timer, TA must be unlocked then and then followed by writing RWT bit to 1. If TA is still locked, the program can write 1 into RWT bit, but it does not reset the Watchdog timer.										

CKCON (0x8E) R/W (0xC7)

	7	6	5	4	3	2	1	0				
RD	WD1	WD0	T2CKDCTL	T1CKDCTL	T0CKDCTL	WD2	-	-				
WR	WD1	WD0	T2CKDCTL	T1CKDCTL	TOCKDCTL	WD2	-	-				
	T2CKDCTL	division Setting	factor to 4, the this bit to 0 (the	Timer 2 clock default power	Control Flag. S frequency equa on value) sets clock frequency	als CPU clo the Timer 2	ock frequency 2 division fact	divided by 4.				
	T1CKDCTL	division Setting	Timer 1 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 1 division factor to 4, the Timer 1 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power on value) sets the Timer 1 division factor to 12, the Timer 1 clock frequency equals CPU clock frequency divided by 12.									
	TOCKDCTL Timer 0 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 0 division factor to 4, the Timer 0 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power on value) sets the Timer 0 division factor equals 12, the Timer 0 clock frequency equals CPU clock frequency divided by 12.											
	WD[2:0]	This reg	gister controls th	he time out val	ue of WDT as t et to maximum:	he following	•	ime out value is				

WD2	WD1	WD0	Time Out Value
0	0	0	131072
0	0	1	1048576
0	1	0	8388608
0	1	1	67108864
1	0	0	134217728
1	0	1	268435456
1	1	0	536870912
1	1	1	1073741824

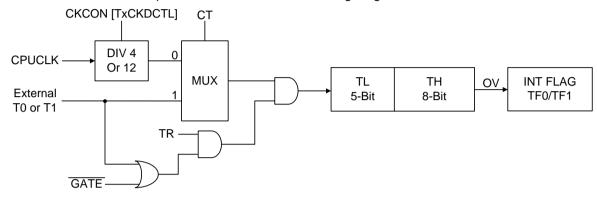
1.12 System Timers – T0 and T1

The CPU contains three 16-bit timers/counters, Timer 0, Timer 1 and Timer 2. In timer mode, Timer 0, Timer 1 registers are incremented every 12 SYSCLK period when the appropriate timer is enabled. In the timer mode, Timer 2 registers are incremented every 12 or 2 SYSCLK period (depending on the operating mode). In the counter mode, the timer registers are incremented every falling edge on their corresponding inputs: T0, T1, and T2. These inputs are read every SYSCLK period.

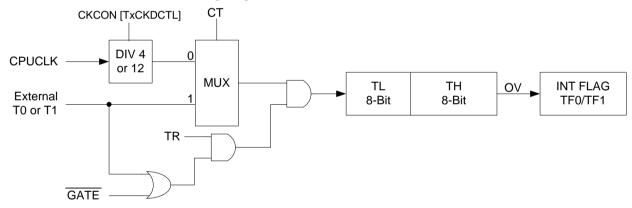
Timer 0 and Timer 1 are fully compatible with the standard 8051. Timer 0 and 1 are controlled by TCON (0x88) and TMOD (0x89) registers while each timer consists of two 8-bit registers TH0 (0x8C), TL0 (0x8A), TH1 (0x8D), TL1 (0x8B).

	7	6	5	4	3	2	1	0		
RD	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
WR	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0		
TF1 Timer 1 Overflow Interrupt Flag bit. TF1 is cleared by hardware when entering							g ISR.			
	TR1	Timer 1 F	Timer 1 Run Control bit. Set to enable Timer 1, and clear to disable Timer 1.							
	TF0	Timer 0 C	Timer 0 Overflow Interrupt Flag bit. TF0 is cleared by hardware when entering ISR.							
	TR0	Timer 0 F	Timer 0 Run Control bit. Set to enable Timer 0, and clear to disable Timer 0.							
IE1,IT1,IE0,IT0 These bits are related to configurations of expanded interrupt INT1 and INT0. These described in the Interrupt System section.								. These are		

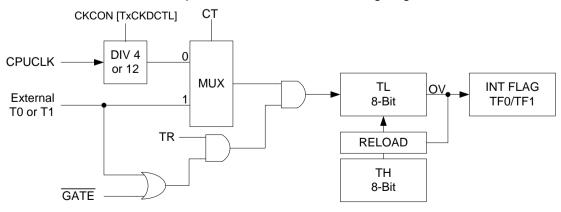
TMOD (0x89h) Timer 0 and 1 Mode Control Register


	7	6		5	4	3	2	1	0		
RD	GATE1	CT1	T	1M1	T1M0	GATE0	CT0	T0M1	T0M0		
WR	GATE1	CT1	T	1M1	T1M0	GATE0	CT0	T0M1	T0M0		
	GATE1 CT1	counter.	or Tim	er Mode	e Select bit. S	ble external T et CT1 to acc		0 0			
	T1M1 Timer 1 Mode Select bit.										
	T1M0 Timer 1 Mode Select bit.										
	GATE0 Timer 0 Gate Control bit. Set to enable external T0 to function as gating control of the counter.										
	СТО	Counter of CT0 to us				et CT0 to use	external T0 a	as the clock so	ource. Clear		
	T0M1	Timer 0 I	Node :	Select bi	it.						
	томо	Timer 0 M	Node	Select bi	it.						
		M1	MO	Mode		Μ	ode Descripti	ons			
		0	0	0		s a 5-bit pre-s er. They form			an 8-bit		
		0	1	1	TH and TL a	are cascaded	to form a 16-	bit counter/tim	ner.		

1	0	2	TL functions as an 8-bit counter/timer and auto-reloads from TH.
1	1	3	TL functions as an 8-bit counter/timer. TH functions as an 8-bit timer which is controlled by GATE1. Only Timer 0 can be configured in Mode 3. When this happens, Timer 1 can only be used where its interrupt is not required.

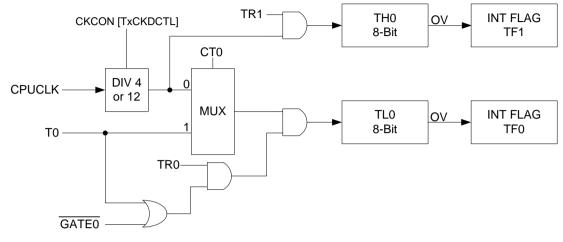

1.12.1 Mode 0

In this mode, TL serves as a 5-bit pre-scaler and TH functions as an 8-bit counter/timer, together working as a 13-bit counter/timer. The Mode 0 operation is shown in the following diagram.


1.12.2 <u>Mode 1</u>

Mode 1 operates the same way Mode 0 does, except TL is configured as 8-bit and thus forming a 16-bit counter/timer. This is shown as the following diagram.

1.12.3 Mode 2


Mode 2 configures the timer as an 8-bit re-loadable counter. The counter is TL while TH stores the reload data. The reload occurs when TL overflows. The operation is shown in the following diagram:

1.12.4 Mode 3

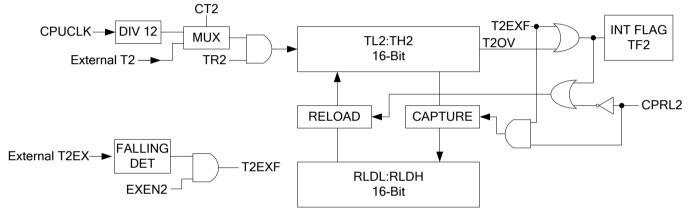
Mode 3 is a special mode for Timer 0 only. In this mode, Timer 0 is configured as two separate 8-bit counters. TL0 uses control and interrupt flags of Timer 0,whereas TH0 uses control and interrupt flag of Timer 1. Since Timer 1's control and flag are occupied, Timer 2 can only be used for counting purposes such as Baud rate generating while Timer 0 is in Mode 3. The operation flow of Mode 3 is shown in the following diagram.

1.13 System Timer – T2

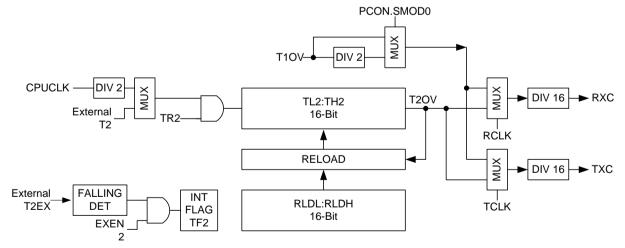
Timer 2 is fully compatible with the standard 8052 timer 2. Timer 2 can be used as the re-loadable counter, capture timer, or baud rate generator. Timer 2 uses five SFRs as counter registers, capture registers and a control register.

	7	6	5	4	3	2	1	0			
RD	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2			
WR	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2			
	TF2 EXF2	TF2 must Timer 2 is T2EX Fal	s used as a U ling Edge Fla	y software. Th ART0 Baud ra g bit.	⁻ 2 is not set w ate generator) ng edge when						
	RCLK Receive Clock Enable bit 1 – UART0 receiver is clocked by Timer 2 overflow pulses 0 – UART0 receiver is clocked by Timer 1 overflow pulses										
	TCLK	Transmit Clock Enable bit 1 – UART0 transmitter is clocked by Timer 2 overflow pulses 0 – UART0 transmitter is clocked by Timer 1 overflow pulses									
	EXEN2	T2EX Fui 1 – Allow	nction Enable	bit. eload as T2E	X falling edge	·					
	TR2	•	o Timer 2 Cor								
	CT2	Timer 2 Timer/Counter Mode Select bit 1 – External event counter uses T2 pin as the clock source 0 – Internal clock timer mode									
	CPRL2	0 – Internal clock timer mode Capture/Reload Select bit 1 – Use T2EX pin falling edge for capture									

T2CON (0xC8h) Timer 2 Control and Configuration Register

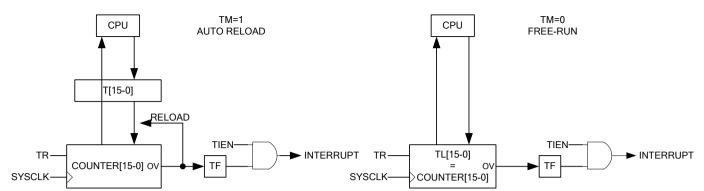


0 – Automatic reload on Timer 2 overflow or falling edge of T2EX (when EXEN2=1). If RCLK or TCLK is set (Timer 2 is used as a baud rate generator), this bit is ignored and an automatic reload is forced on Timer 2 overflows.


Timer 2 can be configured in three modes of operations –Auto-reload Counter, Capture Timer, or Baud Rate Generator. These modes are defined by RCLK, TCLK, CPRL2 and TR2 bits of T2CON registers. The definition is illustrated in the following table:

RCLK or TCLK	CPRL2	TR2	Mode Descriptions
0	0	1	16-bit Auto-reload Counter mode. Timer 2 overflow sets the TF2 interrupt flag and TH2/TL2 is reloaded with RLDH/RLHL register.
0	1	1	16-bit Capture Timer mode. Timer 2's overflow sets TF2 interrupt flag. When EXEN2=1, TH2/TL2 content is captured into RLDH/RLDL when T2EX falling edge occurs.
1	Х	1	Baud Rate Generator mode. Timer 2's overflow is used for configuring UART0.
Х	Х	0	Timer 2 is stopped.

The block diagram of the Timer 2 operating in Auto-reload Counter and Capture Timer modes are shown in the following diagram:


The block diagram of the Timer 2 operating in Baud Rate Generator is shown in the following diagram:

1.14 System Timer – T3 and T4

Both Timer 3 and Timer 4 are simple 16-Bit reload timers or free-run counters and are clocked by the system clock. The block diagram is shown as below.

T34CON (0xCFh) Timer 3 and Timer 4 Control and Status Register

	7	6	5	4	3	2	1	0			
RD	TF4	TM4	TR4	T4IEN	TF3	TM3	TR3	T3IEN			
WR	TF4	TM4	TR4	T4IEN	TF3	TM3	TR3	T3IEN			
	TF4Timer 4 Overflow Interrupt Flag bit.TF4 is set by hardware when overflow condition occurs. TF4 must be cleared by softwareTM4Timer 4 Mode Control bit. TM4 = 1 set timer 4 as auto reload, and TM4=0 set timer 4 as free-run.							•			
TR4Timer 4 Run Control bit. Set to enable Timer 4, and clear to stop Timer 4.T4IENTimer 4 Interrupt Enable bit.T4IEN=0 disable the Timer 4 overflow interruptT4IEN=1 enable the Timer 4 overflow interrupt											
	TF3	Timer 3 C	verflow Inter	rupt Flag bit.	·	ccurs. TF3 m	ust be cleare	d by software			
	ТМЗ		•			auto reload, a		•			
	TR3 Timer 3 Run Control bit. Set to enable Timer 3, and clear to stop Timer 3. T3IEN Timer 3 Interrupt Enable bit.										

T3IEN=0 disable the Timer 3 overflow interrupt

T3IEN=1 enable the Timer 3 overflow interrupt

TL3 (0xAEh) Timer 3 Low Byte Register 0 R/W 00000000

	7	7 6 5 4 3 2 1							
RD	T3[7-0]								
WR	T3[7-0]								

TH3 (0xAFh) Timer 3 High Byte Register 0 R/W 00000000

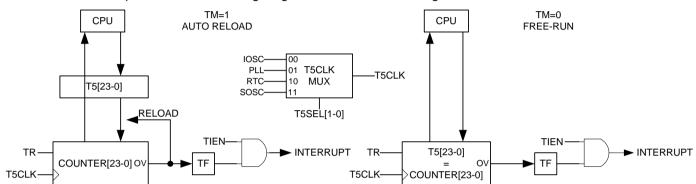
	7 6 5 4 3 2 1 0								
RD	T3[15-8								
WR	T3[15-8								

TL4 (0xACh) Timer 4 Low Byte Register 0 R/W 00000000

	7 6 5 4 3 2 1 0								
RD	T4[7-0]								
WR	T4[7-0]								

TH4 (0xADh) Timer 4 High Byte Register 0 R/W 00000000

	7	6	5	4	3	2	1	0
RD	T4[15-8]							



WR T4[15-8

T3[15-0] and T4[15-0] function differently when been read or written. When written in auto-reload mode, its reload value register is written, and in free-run mode, the counter value is written immediately. When been read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte then the low byte.

1.15 System Timer – T5

T5 is a 24-Bit simple timer. It can select four different clock sources and can be used for extended sleep mode wake up. The clock sources include IOSC, RTC and SIOSC. T5 can be configured either as free-run mode or autoreload mode. Timer 5 does not depend on the SYSCLK, therefore it continues to count under STOP or SLEEP mode if the clock source is present. The following diagram shows the block diagram of Timer 5.

T5CON (0xA003h) Timer 5 Control and Status Register

	7	6	5	4	3	2	1	0
RD	TF5	T5SEL[1]	T5SEL[0]	TM5	TR5	-	-	T5IEN
WR	TF5	T5SEL[1]	T5SEL[0]	TM5	TR5	-	-	T5IEN

TF5	Timer 5 Overflow Interrupt Flag bit.
	TF5 is set by hardware when overflow condition occurs. TF5 must be cleared by software.
T5SEL[1-0]	Timer 5 Clock Selection bits.
	T5SEL[1-0] = 00, IOSC
	T5SEL[1-0] = 01, PLL
	T5SEL[1-0] = 10, RTC
	T5SEL[1-0] = 11, SIOSC
TM5	Timer 5 Mode Control bit. TM5=1 set timer 5 as auto reload, and TM5=0 set timer 5 as free-
	run.
TR5	Timer 5 Run Control bit. Set to enable Timer 5, and clear to stop Timer 5.
T5IEN	Timer 5 Interrupt Enable bit.
	T5IEN=0 disable the Timer 5 overflow interrupt
	T5IEN=1 enable the Timer 5 overflow interrupt

TL5 (0xA004) Timer5 Low Byte Register 0 R/W 00000000

	7 6 5 4 3 2 1								
RD	T5[7-0]								
WR	T5[7-0]								

TH5 (0xA005) Timer5 Medium Byte Register 0 R/W 00000000

	7 6 5 4 3 2 1								
RD	T5[15-8]								
WR	T5[15-8]]								

TT5 (0xA006) Timer5 High Byte Register 0 R/W 00000000

	7 6 5 4 3 2 1									
RD	T5[23-16]									
WR	T5[23-16]									

T5[23-0] functions differently when been read or written. When written in auto-reload mode, its reload value register is written, and in free-run mode, the counter value is written immediately. When been read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte then the low byte.

1.16 Multiplication and Division Unit (MDU)

MDU provides acceleration on unsigned integer operations of 16-bit multiplications, 32-bit division, and shifting and normalizing operations. The following table shows the execution characteristics of these operations. The MDU does not contain the operation completion status flag. Therefore the most efficient utilization of MDU uses NOP delay for the required clock time of the MDU operation types. The number of the clock cycles required for each operation is shown in the following table and it is counted from the last write of the writing sequence.

Operations	Result	Reminder	# of Clock Cycle
32-bit division by 16-bit	32-bit	16-bit	17
16-bit division by 16-bit	16-bit	16-bit	9
16-bit multiplication by 16-bit	32-bit	-	10
32-bit normalization	-	-	3 – 20
32-bit shift left/right	-	-	3 – 18

The MDU is accessed through MD0 to MD5 that contains the operands and the results, and the operation is controlled by ARCON register.

ARCON (0xFF) MDU Control R/W 0000000

	7	6	5	4	3	2	1	0	
RD	MDEF	MDOV	SLR	SC4	SC3	SC2	SC1	SC0	
WR	MDEF	MDOV	SLR	SC4	SC3	SC2	SC1	SC0	
MDEF MDU Error Flag bit. Set by hardware to indicate MDx being written before the previous operation completes. MDEF is automatically cleared after reading ARCON.									
MDOV MDU Overflow Flag bit. MDOV is set by hardwa multiplication is greater than 0x0000FFFFh						if dividend is	zero or the re	sult of	
	SLR	Shift Dire to the left		bit. SLR = 1 ir	ndicates a shi	ft to the right a	and SLR =0 ir	idicates a shift	
SC4-0 Shift Count Control and Result bit. If SC0-4 is written with 00000, the normalization operation performed by MDU. When the normalization is completed, SC4-0 contains the number of shift performed in the normalization. If SC4-0 is written with a non-zero value, then the shift operation is performed by MDU with the number of shift specified by SC4-0 value.								ontains the zero value,	
MD0 (0x	(F9) MDU Dat	a Register 0	R/W 000000	00					

u (uxF9) MDU Data Register u R/W uuuuuuu

	7	6	5	4	3	2	1	0
RD		MD0[7-0]						
WR	MD0[7-0]							

MD1 (0xFA) MDU Data Register 1 R/W 00000000

	7	6	5	4	3	2	1	0
RD	MD1[7-0]							
WR	MD1[7-0]							

MD2 (0xFB) MDU Data Register 2 R/W 0000000

	7	6	5	4	3	2	1	0
	I	0	0		Ű	2	I	0
RD		MD2[7-0]						
WR	MD2[7-0]							
MD3 (0xFC) MDU Data Regi	ster 3 R/W (0000000					
	7	6	5	4	3	2	1	0
RD				MD3[7-	0]			
WR				MD3[7-	0]			
MD4 (0xFD) MDU Data Regi	ster 4 R/W	00000000					
	7	6	5	4	3	2	1	0

	7	6	5	4	3	2	1	0
RD	MD4[7-0]							
WR	MD4[7-0]							

MD5 (0xFE) MDU Data Register 5 R/W 00000000

	7	6	5	4	3	2	1	0
RD	MD5[7-0]							
WR	MD5[7-0]							

MDU operation consists of three phases.

Loading MD0 to MD5 data registers in an appropriate order depending on the operation.

Execution of the operations.

Reading result from MD0 to MD5 registers.

The following list shows the MDU read and write sequences. Each operation has its unique writing sequence and reading sequence of MD0 to MD5 registers therefore a precise access sequence is required.

1.16.1 Division - 32-bit divide by 16-bit or 16-bit divide by 16-bit

Follow the following write-sequence. The first write of MD0 resets the MDU and initiates the MDU error flag mechanism. The last write incites calculation of MDU.

Write MD0 with Dividend LSB byte

Write MD1 with Dividend LSB+1 byte

Write MD2 with Dividend LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Write MD3 with Dividend MSB byte (ignore this step for 16-bit divide by 16-bit)

Write MD4 with Divisor LSB byte

Write MD5 with Divisor MSB byte

Then follow the following read-sequence. The last read prompts MDU for the next operations.

Read MD0 with Quotient LSB byte

Read MD1 with Quotient LSB+1 byte

Read MD2 with Quotient LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Read MD3 with Quotient MSB byte (ignore this step for 16-bit divide by 16-bit)

Read MD4 with Remainder LSB byte

Read MD5 with Remainder MSB byte

Read ARCON to determine error or overflow condition

Please note if the sequence is violated, the calculation may be interrupted and result in errors.

1.16.2 Multiplication - 16-bit multiply by 16-bit

Follow the following write sequence.

Write MD0 with Multiplicand LSB byte

Write MD4 with Multiplier LSB byte Write MD1 with Multiplicand MSB byte Write MD5 with Multiplier MSB byte

Then follow the following read sequence.

Read MD0 with Product LSB byte Read MD1 with Product LSB+1 byte Read MD2 with Product LSB+2 byte Read MD3 with Product MSB byte Read ARCON to determine error or overflow condition

1.16.3 Normalization – 32-bit

Normalization is obtained with integer variables stored in MD0 to MD3. After normalization, all leading zeroes are removed by shift left operations. To start the normalization operation, SC4-0 in ARCON is first written with 00000. After completion of the normalization, SC4-0 is updated with the number of leading zeroes and the normalized result is restored on MD0 to MD3. The number of the shift of the normalization can be used as exponents. The following write sequence should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte Write MD1 with Operand LSB+1 byte Write MD2 with Operand LSB+2 byte Write MD3 with Operand MSB byte Write ARCON with SC4-0 = 00000

Then follow the following read sequence.

Read MD0 with Result LSB byte

Read MD1 with Result LSB+1 byte

Read MD2 with Result LSB+2 byte

Read MD3 with Result MSB byte

Read SC[4-0] from ARCON for normalization count or error flag

1.16.4 <u>Shift – 32-bit</u>

Shift is done with integer variables stored in MD0 to MD3. To start the shift operation, SC4-0 in ARCON is first written with shift count and SLR with shift direction. After completion of the Shift, the result is stored back to MD0 to MD3. The following write sequence should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte

Write MD1 with Operand LSB+1 byte

Write MD2 with Operand LSB+2 byte

Write MD3 with Operand MSB byte

Write ARCON with SC4-0 = Shift count and SLR with shift direction

Then follow the following read sequence.

Read MD0 with Result LSB byte

Read MD1 with Result LSB+1 byte

Read MD2 with Result LSB+2 byte

Read MD3 with Result MSB byte

Read ARCON's for error flag

1.16.5 MDU Flag

The error flag (MDEF) of MDU indicates improperly performed operations. The error mechanism starts at the first MD0 write and finishes with the last read of MD result register. MDEF is set if current operation is interrupted or restarted by improper write of MD register before the operation completes. MDEF is cleared if the operations and proper write/read sequences successfully complete. The overflow flag (MDOV) of MDU indicates an error of operations. MDOV is set if

the divisor is zero Multiplication overflows Normalization operation is performed on already normalized variables (MD3.7 =1)

1.17 Serial Port – UART0

UART0 is full duplex and fully compatible with the standard 8052 UART. The receive path of the UART0 is double-buffered that can commence reception of second byte before previously received byte is read from the receive register. Writing to SBUF0 loads the transmit register while reading SBUF0, reads a physically separate receive register. The UART0 can operate in four modes: one synchronous (Mode 0) and three asynchronous modes (Mode 1, 2, and 3). Mode 2 and Mode 3 share a special provision for multi-processor communications. This feature is enabled by setting SM2 bit in SCON0 register. The master processor first sends out an address byte, which identifies the slave. An address byte differs from a data byte in the 9th bit: 1 defines an address byte whereas 0 defines a data byte. When SM2 is set to 1, no slave can be interrupted by a data byte. The addressed slave clears its SM2 bit and prepares to receive the following incoming data bytes. The slaves that are not addressed leave their SM2 set and ignore the incoming data. The UART0-related registers are SBUF0, SCON0, PCON, IE, and IP.

	7	6	Ę	5	4	3	2	1	0	
RD	SM0	SM1	SN	И2	REN	TB8	RB8	TIF	RIF	
WR	SM0	SM1	SN	И2	REN	TB8	RB8	TIF	RIF	
	SM0, SM1	UART O	peration	n Mode						
		MODE	SM0	SM1			Description			
		0	0	0		s Shift Regist CPUCLK/12	ter Mode			
		1	0	1	Baud rate = T2CON reg	8-Bit UART Mode Baud rate = Timer 1 or Timer 2 overflow rate. This is select T2CON registers.				
		2	1	0	(PCON.SMOD0 = 1) 9-Bit UART Mode, variable baud rate					
		3	1	1						
	SM2			•		nunication as				
	REN		de, if R	EN=1,		witch back fur sition on RX o				
	TB8					JART mode (r le 9 th bit as a l				
	RB8		ive-valu			ART mode (m				
	TIF	must be	cleared	by sof	t Flag bit. Set by hardware after completion of a serial transmission and by software. The interrupt enable bit is located in IE (0xA8) and the s located in IP (0xB8).					
	RIF		ed by so	oftware	bit. Set by hardware after completion of a serial reception and must e. The interrupt enable bit is located in IE (0xA8) and the interrupt					
SPIJED (0v00b) JAPTO Data Buffor Pogistor										

SCON0 (0x98h) UART0 Configuration Register

SBUF0 (0x99h) UART0 Data Buffer Register

	7	6	5	4	3	2	1	0
RD		RB[7-0]						
WR	TB[7-0]							

SBUF0 is used for both transmission and reception. Writing a data byte into SBUF0 puts this data in UART0's transmit

buffer and starts a transmission. Reading a byte from SBUF means data being read from the UARTO's receive buffer.

1.17.1 Mode 0

Mode 0 is a simple synchronous shift register mode. TXD0 outputs the shift clock, which is fixed at CPUCLK/12. RXD0 is a bidirectional I/O port that serves as a data-shifting port. To utilize this mode, TXD0 pin must be enabled as an output pin, while RXD0 needs to be configured as an open-drain type of I/O port. The shift data changes at the rising edge of the shift clock and is valid at the falling edge of the shift clock. The transmission starts when anew byte is written in SBUF0 as TI is cleared to 0. When the byte is transmitted, TI is set and the UART0 waits for the next byte to be transmitted. The reception is initiated by setting REN=1 and RI cleared to 0. When a byte is received, RI is set by UART0.

1.17.2 <u>Mode 1</u>

8-bit UART mode. RXD0 is the serial input and TXD0 is the serial output. To utilize this mode, the corresponding RXD0 and TXD0 pin configuration should also be set correctly. 10-bit data (including a Start bit, 8 data bit, and a Stop bit) are transferred. For UART0, the baud rate is set by Timer 1 or Timer 2 overflow rate. The control is determined by SMOD0.PCON, and RCLK.T2CON, TCLK.T2CON. When SMOD0.PCON is 1, Timer 1 overflow is selected, and SMOD0.PCON is 0, Timer 1 overflow rate divided by 2 is selected. And if RCLK.T2CON, or TCLK.T2CON is set, the Timer 2 overflow rate is selected and overwrites the SMOD0 setting.

1.17.3 <u>Mode 2</u>

9-bit UART mode. RXD0 is the serial input and TXD0 is the serial output. To utilize this mode, the corresponding RXD0 and TXD0 pins should be configured correctly. 11-bit data including a Start bit (always 0), 8 data bits, a programmable 9th bit, and a Stop bit (always 1) are transferred. The 9th bit can be configured as a parity bit configured by software through TB8 in SCON0. The received 9th bit can be read from TB8. The software determines the correctness of the parity check. The baud rate in Mode 2 is fixed at 1/32 or 1/64 of CPU clock. This is controlled by SMOD0 in PCON register.

1.17.4 <u>Mode 3</u>

Similar to Mode 2 (9-bit UART mode). RXD0 is the serial input and TXD0 is the serial output. To utilize this mode, the corresponding RXD0 and TXD0 pins should also be configured properly. 11-bit data including a Start bit (always 0), 8 data bits, a programmable 9th bit, and a Stop bit (always 1) are transferred. The 9th bit can serve as a parity bit configured by software through TB8 in SCON0. The received 9th bit can be read from TB8. The software determines the correctness of the parity check. The mechanism of the baud rate control in Mode 3 is similar to which in Mode 1. that is determined by Timer 1 or Timer 2 overflow and is set by SMOD0, and T2CON.

1.18 I²C Master

The I²C master controller provides the interface to I²C slave devices. It can be programmed to operate with arbitration and clock synchronization to allow it to operate in multi-master configurations. The master uses SCL and SDA pins. The controller contains a built-in 8-bit timer to allow various I²C bus speed. The maximum I²C bus speed is limited to SYSCLK/12.

I2CMTP (0xF7h) I²C Master Time Period R/W 00000000

	7	6	5	4	3	2	1	0
RD		I2CMTP[7-0]						
WR	I2CMTP[7-0]							

This register set the period time of I^2C bus clock – SCL. The SCL period time is set according to SCLPERIOD = 8 * (1 + I2CMTP) * CPUCLK PERIORD

I2CMSA (0xF4) I²C Master Slave Address R/W 00000000

	7	6 5 4 3 2 1							
RD		SA[6-0]							
WR		SA[6-0] RS							
	SA[6-0] Slave Address. SA[6-0] defines the slave address the I ² C master uses to con RS Receive/Send Bit. RS determines if the following operation is to RECEIVE (R (RS=0).								

I2CMBUF (0xF6) I²C Master Data Buffer Register R/W 0000000

	7	6	5	4	3	2	1	0
RD		RD[7-0]						
WR	TD[7-0]							

I2CMBUF functions as a transmit-data register when written and as a receive-data register when read. When written, TD is sent to the bus by the next SEND or BURST SEND operations. TD[7] is sent first. When read, RD contains the 8-bit data received from the bus upon the last RECEIVE or BURST RECEIVE operation.

I2CMCR (0xF5) I²C Master Control and Status Register R/W 00000000

	7	6	5	4	3	2	1	0
RD	-	BUSBUSY	IDLE	ARBLOST	DATAACK	ADDRACK	ERROR	BUSY
WR	CLEAR	INFILEN	-	HS	ACK	STOP	START	RUN

The I2CMCR register is used for setting control when it is written, and as a status signal when read.

CLEAR	Reset I2C Master State Machine. Set CLEAR=1 will reset the state machine. CLEAR is self- cleared when reset is completed.
INFILEN	Input Noise Filter Enable. When IFILEN is set, pulses shorter than 50 nsec on inputs of SDA and SCL are filtered out.
IDLE	This bit indicates that I ² C master is in the IDLE mode.
BUSY	This bit indicates that I ² C master is receiving or transmitting data, and other status bits are not valid.
BUSBUSY	This bit indicates that the external I ² C bus is busy and access to the bus is not possible. This bit is set/reset by START and STOP conditions.
ERROR	This bit indicates that an error occurs in the last operation. The errors include slave address was not acknowledged, or transmitted data is not acknowledged, or the master controller loses arbitration.
ADDRERR	This bit is automatically set when the last operation slave address transmitted is not acknowledged.
DATAERR	This bit is automatically set when the last operation transmitted data is not acknowledged.
ARBLOST	This bit is automatically set when the last operation I ² C master controller loses the bus arbitration.

START, STOP, RUN and HS, RS, ACK bits are used to drivel²C Master to initiate and terminate a transaction. The Start bit generates START, or REPEAT START protocol. The Stop bit determines if the cycle stops at the end of the data cycle or continues to a burst. To generate a single read cycle, the designated address is written in SA, RS is set to 1, ACK=0, STOP=1, START=1, RUN=1 are set in I2CMCR to perform the operation and then STOP. When the operation is completed (or aborted due to errors), I²C master generates an interrupt. The ACK bit must be set to 1. This causes the controller to send an ACK automatically after each byte transaction. The ACK bit must be reset when set to 0 when the master operates in receive mode and not to receive further data from the slave devices.

	DC		OTOD	OTADT							
HS	RS	ACK	STOP	START	RUN	OPERATIONS					
0	0	-	0	1	1	START condition followed by SEND. Master remains in TRANSMITTER mode					
0	0	-	1	1	1	START condition followed by SEND and STOP					
0	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK. Master remains in RECEIVER mode					
0	1	0	1	1	1	START condition followed by RECEIVE and STOP					
0	1	1	0	1	1	START condition followed by RECEIVE. Master remains in RECEIVER mode					
0	1	1	1	1	1	Illegal command					
1	0	0	0	0	1	Master Code sending and switching to HS mode					
The fo	The following table lists the permitted control bits combinations in master TRANSMITTER mode.										
HS	RS	ACK	STOP	START	RUN	OPERATIONS					

The following table lists the permitted control bits combinations in master IDLE mode.

0	-	-	0	0	1	SEND operation. Master remains in TRANSMITTER mode				
0	-	-	1	0	0	STOP condition				
0	-	-	1	0	1	SEND followed by STOP condition				
0	0	-	0	1	1	REPEAT START condition followed by SEND. Master remains in TRANSMITTER mode				
0	1	-	1	1	1	REPEAT START condition followed by SEND and STOP condition REPEAT START condition followed by RECEIVE				
0	1	0	0	1	1	REPEAT START condition followed by RECEIVE operation with negative ACK. Master remains in TRANSMITTER mode				
0	1	0	1	1	1	REPEAT START condition followed by SEND and STOP condition.				
0	1	1	0	1	1	REPEAT START condition followed by RECEIVE. Master remains in RECEIVER mode.				
0	1	1	1	1	1	Illegal command				
The fol	The following table lists the permitted control bits combinations in master RECEIVER mode.									
HS	RS	ACK	STOP	START	RUN	OPERATIONS				
0	-	0	0	0	1	RECEIVE operation with negative ACK. Master remains in RECEIVE mode				
0	-	-	1	0	0	STOP condition				
0	-	0	1	0	1	RECEIVE followed by STOP condition				
0	-	1	0	0	1	RECEIVE operation. Master remains in RECEIVER mode				
0	-	1	1	0	1	Illegal command				
0	1	0	0	1	1	REPEAT START condition followed by RECEIVE operation with negative ACK. Master remains in RECEIVER mode				
0	1	0	1	1	1	REPEAT START condition followed by RECEIVE and STOP conditions				
0	1	0	1	1	1	REPEAT START condition followed by RECEIVE. Master remains in RECEIVER mode				
0	0	-	0	1	1	REPEAT START condition followed by SEND. Master remains in TRANSMITTER mode.				
0	0	_	1	1	1	REPEAT START condition followed by SEND and STOP conditions.				

All other control-bit combinations not included in three tables above are NOP. In Master RECEIVER mode, STOP should be generated only after data negative ACK executed by Master or address negative ACK executed by slave. Negative ACK means SDA is pulled low when the acknowledge clock pulse is generated.

I2CMTO (0xC3) I²C Time Out Control Register R/W 00000000

	7	6	5	4	3	2	1	0			
RD	I2CMTOF		I2CMTO[6-0]								
WR	I2CMTOEN		I2CMTO[6-0]								
	I2CMTOEN I2CMTOF I2CMTO[6-0]	I2CM Time This bit is s I2CM Time The TO tim	et when a time Out Setting	e out occurs. I CMTO[6-0]+1)* d.							

2. Flash Controller

The flash controller connects the CPU to the on-chip embedded FLASH memory. The FLASH memory functions as the program storage as well as non-volatile data storage. The program access of the FLASH does not require any special attention. When the FLASH is used as data storage, the software sends commands to the FLASH controller through the XFR registers. And when the FLASH controller processes these commands, CPU is held idle until the command is executed. The embedded Flash memory contains two blocks –Main Memory and Information Block (IFB). The Main Memory is 64KX8 with uniform 1024 Byte page (sector) size. The Information Block is 256 Byte and sits in a separate sector.

The commands performed by a Flash Controller are defined in FLSHCMD registers. The defined operations allow the user program to use on-chip flash as a program memory, and a non-volatile data memory in In-System-Programming as well as In-Application-Programming. The maximum flexibility of the on-chip flash memory can be achieved through user program. The manufacturer provides a default ISP boot program located on the top sectors of the flash. The preset ISP boot program can be used or modified or replaced based on application requirements.

RD WRVFY - FAIL CMD4 CMD3 CMD2 CMD1 CMD0 WR CYC[2-0] CMD4 CMD3 CMD2 CMD1 CMD0 WRVFY Byte Write Result Verify. At the end of a write cycle, hardware reads back the data and compares it with which should be written to the flash. If there is a mismatch, this bit represents 0. It is reset to 1 by hardware when another ISP command is execution after reasons. It is recommended that the program should verify the command execution after issuing a command to the Flash controller. It is not cleared by reading but when a new command is issued. Possible causes of FAIL include address over range, or address falls into protected region. CYC[2-0] Flash Command Time Out CYC[2-0] WRITE ERASE 0 0 0 55 5435 0 0 1 1 60 5953 0 1 1 0 389 8889 Evention operations, CYC[2-0] WRITE ERASE 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1		7	6	5	4	3	5	2	1	0	
WRVFY Byte Write Result Verify. At the end of a write cycle, hardware reads back the data and compares it with which should be written to the flash. If there is a mismatch, this bit represents 0. It is reset to 1 by hardware when another ISP command is executed. FAIL Command Execution Result. It is set if the previous command execution fails due to any reasons. It is recommended that the program should verify the command execution fails due to any reasons. It is recommended that the program should verify the command execution after issuing a command to the Flash controller. It is not cleared by reading but when a new command is issued. Possible causes of FAIL include address over range, or address falls into protected region. CYC[2-0] Flash Command Time Out CYC[2-0] VRITE ERASE 0 0 1 60 5953 0 1 0 0 55 5435 0 0 1 1 0 0 55 5435 0 0 1 1 0 0 55 5435 0 0 1 1 0 0 5 5435 0 0 1 1 0 0 5 5435 0 0 1 1 0 0 5 5435 0 1 1	RD	WRVFY	-	FAIL	CMD4	CM	D3	CMD2	CMD1	CMD0	
compares it with which should be written to the flash. If there is a mismatch, this bit represents 0. It is reset to 1 by hardware when another ISP command is executed.FAILCommand Execution Result. It is set if the previous command execution fails due to any reasons. It is recommended that the program should verify the command execution after issuing a command to the Flash controller. It is not cleared by reading but when a new command is issued. Possible causes of FAIL include address over range, or address falls into protected region.CYC[2-0]FAIL Command Time Out CYC[2-0] defines command time out cycle count. Cycle period is defined by ISPCLK, which is SVSCLK/256/(ISPCLKF[7-0]+1). The number of cycles is tabulated as following.CYC[2-0]WRITEERASE 0000007574081108584041108584048404108988898889For normal operations, CYC[2-0] should be set to 111.CMD4 – CMD0COMMAND10010010010010010010010010010010101010 <th< td=""><td>WR</td><td></td><td>CYC[2-0]</td><td></td><td>CMD4</td><td>CM</td><td>D3</td><td>CMD2</td><td>CMD1</td><td>CMD0</td></th<>	WR		CYC[2-0]		CMD4	CM	D3	CMD2	CMD1	CMD0	
issuing a command to the Flash controller. It is not cleared by reading but when a new command is issued. Possible causes of FAIL include address over range, or address falls into protected region. CYC[2-0] Flash Command Time Out CYC[2-0] defines command time out cycle count. Cycle period is defined by ISPCLK, which is SYSCLK/256/(ISPCLKF[7-0]+1). The number of cycles is tabulated as following. CYC[2-0] WRITE ERASE 0 0 0 55 5435 0 0 1 60 5953 0 1 0 65 6452 0 1 1 69 6897 1 0 0 75 7408 1 0 1 80 7906 1 1 0 85 8404 1 0 1 85 8404 1 0 0 89 8889 8889 1 0 0 89 8889 1 0 1 80 7906 1 1 0 0 89 8889 1 0 1 1 0 0 89 8889 1 0 1 0 0 89 8889 1 0 1 0 0 89 8889 1 0 1 0 0 89 8889 1 0 1 0 0 1 0 1 0 1 0 0			compares represents Command	compares it with which should be written to the flash. If there is a mismatch, this bit represents 0. It is reset to 1 by hardware when another ISP command is executed. Command Execution Result. It is set if the previous command execution fails due to any							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		CYC[2-0]	issuing a command into protec Flash Cor CYC[2-0]	command to is issued. Po cted region. nmand Time defines com	the Flash o ossible cau Out mand time	controller. uses of FAI	It is no L inclu	t cleared by de address Cycle period	v reading but w over range, or d is defined by l	hen a new address falls ISPCLK, which	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								-			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0	0	0		55		5435	5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	0	1		60		5953	3	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0	1	0	65			6452	2	
1 0 1 80 7906 1 1 0 85 8404 1 0 0 89 8889 For normal operations, CYC[2-0] should be set to 111. CMD4 – CMD0 Flash Command These bits define commands for the Flash controller. The valid commands are listed in the following table. Any invalid commands do not get executed but return with a Fail bit. CMD4 CMD3 CMD2 CMD1 CMD0 COMMAND 1 0 0 0 Main Memory Byte Read 0 1 0 0 Main Memory Sector Erase 0 0 1 0 0 Main Memory Sector Byte Write 0 0 0 0 1 Flash Byte Read 0 0 0 1 Flash Byte Write (0x40 – 0xFF) 0 0 0 1 1 -			0	1	1		69		6897	7	
$\begin{array}{ c c c c c c c c }\hline 1 & 1 & 0 & 85 & 8404 \\\hline 1 & 0 & 0 & 89 & 8889 \\\hline \hline \\ \hline \\$			1	0	0		75		7408	3	
100898889For normal operations, CYC[2-0] should be set to 111.CMD4 – CMD0Flash Command These bits define commands for the Flash controller. The valid commands are listed in the following table. Any invalid commands do not get executed but return with a Fail bit.CMD4CMD3CMD2CMD1CMD0COMMAND10000Main Memory Byte Read01000Main Memory Sector Erase00100IFB Byte Read00011000011-			1				80		7906	5	
CMD4 – CMD0 For normal operations, CYC[2-0] should be set to 111. Flash Command These bits define commands for the Flash controller. The valid commands are listed in the following table. Any invalid commands do not get executed but return with a Fail bit. CMD4 CMD3 CMD2 CMD1 CMD0 COMMAND 1 0 0 0 Main Memory Byte Read 0 1 0 0 Main Memory Sector Erase 0 0 1 0 0 Main Memory Sector Byte Write 0 0 0 1 0 IFB Byte Read 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1			1		0		85		8404	ŀ	
CMD4 – CMD0Flash Command These bits define commands for the Flash controller. The valid commands are listed in the following table. Any invalid commands do not get executed but return with a Fail bit.CMD4CMD3CMD2CMD1CMD0COMMAND1000Main Memory Byte Read01000Main Memory Sector Erase00100Main Memory Sector Byte Write00010100011000011-			1	0	0		89		8889)	
CMD4 CMD3 CMD2 CMD1 CMD0 COMMAND 1 0 0 0 0 Main Memory Byte Read 0 1 0 0 0 Main Memory Sector Erase 0 0 1 0 0 Main Memory Sector Byte Write 0 0 1 0 0 Main Memory Sector Byte Write 0 0 0 1 0 IFB Byte Read 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1 -		CMD4 – CMD	0 Flash Cor These bits	nmand s define com	mands for	the Flash o	controlle	er. The val			
1 0 0 0 0 Main Memory Byte Read 0 1 0 0 0 Main Memory Sector Erase 0 0 1 0 0 Main Memory Sector Byte Write 0 0 1 0 0 Main Memory Sector Byte Write 0 0 0 1 0 IFB Byte Read 0 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1 -						1					
0 1 0 0 0 Main Memory Sector Erase 0 0 1 0 0 Main Memory Sector Byte Write 0 0 1 0 0 IFB Byte Read 0 0 0 0 1 IFB Byte Read 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1											
0 0 1 0 0 Main Memory Sector Byte Write 0 0 0 1 0 IFB Byte Read 0 0 0 0 1 IFB Byte Read 0 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1 -			-								
0 0 0 1 0 IFB Byte Read 0 0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1 -									,		
0 0 0 1 IFB Byte Write (0x40 – 0xFF) 0 0 0 1 1 -										Dyle Wille	
0 0 0 1 1 -										-0xEE	
			-					-			
			1	0	0	1	0	-			

FLSHCMD (A020h) Flash Controller Command Register R/W 10000000 TB Protected

For all commands, the address of the flash is composed from FLSHADM:FLSHADH:FLSHADL and the data is referred at FLSHDAT registers. The erase command operation is sector-based, the address of the sector is

determined from the high order address bits. For example, to point to the sector of 0x0C000-0xCFFF, the upper 8 bits "0C" are used. And the erase command erases the whole addressed sector contents. For Erase and Write command, the Flash Controller also checks if the destination address falls within the protection zone defined by CNTPCTL and CNTPCTH registers. If it is protected, the Flash Controller does not execute the command and return with FAIL result bit. For IFB Byte-write, the Flash Controller does not execute the command and return with Fail result bit if the byte address falls into manufacturer data range. Please also note the Fuse block is used for manufacturer to store manufacturing related and calibration data and thus can only be read and not writable or erasable. Fuse block can only be erased or written under writer mode.

ISPCLKF (A024h) Flash Command Clock Scaler R/W 00100101 TB Protected

	7	6	5	4	3	2	1	0		
RD	ISPCLKF[7-0]									
WR		ISPCLKF[7-0]								

ISPCLKF[7-0] configures the clock time base for generation of Flash erase and write timing. ISPCLK = SYSCLK * (ISPCLKF[7-0]+1)/256. For correct timing, ISPCLK should be set to approximately at 2MHz.

FLSHDAT (A021h) Flash Controller Data Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0			
RD		Flash Read Data Register									
WR		Flash Write Data Register									

FLSHADL (A023h) Flash Controller Low Address Data Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0			
RD		Flash Address Low Byte Register ADDR[7-0]									
WR		Flash Address Low Byte Register ADDR[7-0]									

FLSHADH (A022h) Flash Controller High Address Data Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0		
RD	Flash Address High Byte Register ADDR[15-8]									
WR	Flash Address High Byte Register ADDR[15-8]									

FLSHADM (A012h)Flash Controller MSB Address Data Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	-
WR	-	-	-	-	-	-	-	-

A very common problem of embedded flash memory is when being used as both data and program storage, which leads to content loss due to software or other problems caused by program flow or noise. It induces executions of modifying stored contents. The design of Flash controller takes into considerations of these events and provides further protection to avoid accidental erasure or modifications of critical information or software codes. When a command is sent to the Flash Controller through FLSHCMD register, the controller checks whether the destination of the command falls in the content protection zones. If it falls within the protection zones, the flash control aborts its operations and returns with command failure message. 00000 to CNTPCTL, and CNTPCTH to 1FFFF defines two protections zones.

CNTPCTL (A025h) Flash Content Protection Low Zone Register R/W 11111111 TB Protected

	7	6	5	4	3	2	1	0		
RD	Content Protection Low Register									
WR		Content Protection Low Register								

This register defines the high bound address from 00000h of the flash which is protected against erasure or modifications. The data is processed in 256 Byte increments. The protected region is great than or equal to 00 and less than (CNTPCTL -1). Note that CNTPCTL defaults to 0xFF which protects the whole 32KB of flash memory. User program needs to write the appropriate data into CNTPCTL to enable erase and write access.

CNTPCTH (A026h) Flash Content Protection High Zone Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0			
RD		Content Protection High Register									
WR		Content Protection High Register									

This register defines the low bound address from 0FFFFh of the flash to be protected against erasure or modifications. The data is processed in the increments of 256 Byte. The protected region is great than (CNTPCTH1+1) and less than or equal to FF. Note that CNTPCTH1 defaults to 00h which means the protection of 32KB of flash memory is on. User program needs to write the appropriate data into CNTPCTH1 by reading IFB-protected information to protect boot code and expand the protection zone under application considerations.

There is additional content protection against internal program. This protects sensitive data from unauthorized access. The protection range is from 0x01000 to 0x0FFFF of embedded flash memory. The protection is achieved by two special registers - INTPCT1 (0xA013) and INTPCT2 (0xA014). After any reset condition such as power-up, RSTN, LVR, or WDT reset, INTPCT1 is initialized to 0x00, and INTPCT2 is initialized to 0bX000000. The bits in INTPCT1 can only be written to "1", and the bit in INTPCT2 can only be written to "1". When the embedded flash memory has been protected, this means accessing this protected range returns with 0x00 either by program instruction such as "MOVC" or by Flash controller read access. This also applies for program executions that reach this range, the returned value of "0x00" is interpreted as NOP and it continues to the next location. The internal protection is by default not turned on after reset because INTPCT1 is 0x00 and INTPCT2 is 0bX000000. Both registers are protected by TB. To turn on the internal protection, the value of INTPCT1 and INTPCT2 can only be written to 0. Once the protection is turned on, it can not be turned off because INTPCT1 and INTPCT2 can only be set to "1"., To restore unprotected state, the chip must go through a reset. The internal protection should be enabled with extreme cautiousness. It is important that once it is turned on, program execution should not reach the protected zone, otherwise unpredicted program errors may occur.

INTPCT1 (A013h) Internal Protection Enable Register R/W 00000000 TB Protected

	7	6	5	4	3	2	1	0			
RD		INTPCT1[7-0]									
WR		INTPCT1[7-0]									

This register can be written to "1" only. Writing "0" into any bit of this register does not alter the content. This register is cleared to 0x00 after reset. And the value of this register can be cleared only by a reset.

INTPCT2 (A014h) Internal Protection Enable Register R/W X000000 TB Protected

	7	6	5	4	3	2	1	0	
RD	-		INTPCT2[6-0]						
WR	-		INTPCT2[6-0]						

This register can be written to "1" only. Writing "0" into any bit of this register does not alter the content. This register is set to 0bX000000 after a reset. And the value of this register can be set only by a reset.

The following table summarizes the internal program protection with different INCTPCT1 and INTPCT2 settings and protected range from program read access.

Executed Priority	Register	Protected Region of Embedded Flash Memory
1	INTPCT1[0]=1	0x01000 ~ 0x0FFFF
2	INTPCT1[1]=1	0x02000 ~ 0x0FFFF
3	INTPCT1[2]=1	0x03000 ~ 0x0FFFF
4	INTPCT1[3]=1	0x04000 ~ 0x0FFFF
5	INTPCT1[4]=1	0x05000 ~ 0x0FFFF
6	INTPCT1[5]=1	0x06000 ~ 0x0FFFF
7	INTPCT1[6]=1	0x07000 ~ 0x0FFFF
8	INTPCT1[7]=1	0x08000 ~ 0x0FFFF
9	INTPCT2[0]=1	0x09000 ~ 0x0FFFF
10	INTPCT2[1]=1	0x0A000 ~ 0x0FFFF
11	INTPCT2[2]=1	0x0B000 ~ 0x0FFFF

CS5523 PRELIMINARY

12	INTPCT2[3]=1	0x0C000 ~ 0x0FFFF
13	INTPCT2[4]=1	0x0D000 ~ 0x0FFFF
14	INTPCT2[5]=1	0x0E000 ~ 0x0FFFF
15	INTPCT2[6]=1	0x0F000 ~ 0x0FFFF

3. **Essential Analog Blocks**

3.1 **On-Chip 1.8V Regulator**

An on-chip regulator is used to provide supply for core logic and internal E-Flash memory (VDDC). The regulator is partitioned into a back-up regulator and a main regulator. The main regulator is enabled only in normal, and STOP modes, and disabled in SLEEP mode when the back up regulator is turned on. The main regulator consumes about 100uA itself, while the back-up regulator consumes about 5uA. The back-up regulator can supply up to 500uA of current therefore it is important all peripheral circuits should be kept off during SLEEP mode. After reset, the main regulator defaults to on state. The regulator requires an external capacitor, which should be connected to VDDC pin. A minimum of 1uF plus a 0.1uF in parallel is required for the stability of the regulator. The main regulator outputs about can be adjusted by REGTRM (with default at its maximum) and the back-up regulator outputs about 1.60V. A manufacturer calibrated value of REGTRM for 1.8V is stored in IFB.

REGTRM (A000h) Regulator Trim Register RW 11111111 TB Protected

	7	6	5	4	3	2	1	0
RD	REGTRM[7-0]							
WR		REGTRM[7-0]						

REGTRM[7-0]

Trim Register for main 1.8V regulator.

REGTRM[7-0]=FF corresponds to maximum output level. REGTRM[7-0]=00 corresponds to minimum output level. The in-between value in general is linear to the output level. Typically the maximum is around 2.0V while the minimum is around 1.6V

3.2 **1.1V Reference**

This reference is derived from on-chip band-gap reference and has very low temperature coefficient and supply voltage dependency. This reference is connected to ADC input and can be used for calibration. The value of this reference is measured and stored in IFB during the manufacture final test. The reference is enabled in normal mode only.

3.3 Precision Internal 16MHz Oscillator (IOSC)

The internal oscillator is a very important peripheral as it provides the default clock source after reset and other critical timing. The internal oscillator has the salient features that it behaves well during the enable and disable transient. No clock glitches or extra clock edge is generated during the on/off transition, and the oscillator can reach to stable oscillations within very short time typically within 10 cycles. The IOSC consumes around 300uA when enabled. The IOSC is always enabled except entering into STOP mode. And in STOP mode when it is disabled, IOSC only consumes less than 1uA standby current.

Similar to the on-chip regulator, IOSC also exhibits chip-to-chip variations. A calibrated value that set IOSC at 16MHz +/- 2% is stored in IFB. The user program can set this value to IOSC trimming register, IOSCITRM (A001h) and IOSCVTRM (A002h). The IOSC frequency has very little variations over the operation range (-40o- 85oC and VDD = 2.5V - 5.5V). The variation is typically less than +/-2% over the operation conditions. It is possible that user program to set a different frequency other than 16MHz as long as user program provide a calibration method to set IOSC frequency at the desired value at typical operation condition, and it will be stable and accurate over the entire operation range. Please note that the trimming register will be set to its default value after resets, the user program must reinitialize to its calibrated value. The total trim range of the IOSC is roughly from 7MHz up to 24MHz.

The IOSC is also equipped with Spread Spectrum capability for EMI sensitive applications. The SS deviation can be controlled to fit various requirements. However, once SS is enabled, the accuracy of IOSC cannot be maintained.

	\ <i>\</i>		0						
	7	6	5	4	3	2	1	0	
RD		SSC	[3-0]		SSA	[1-0]	ITRM	1[1-0]	
WR		SSC[3-0]			SSA[1-0]			/[1-0]	
	SSC[3-0] SSC[3-0] defines the spread spectrum sweep rate. If SSC[3-0] = 0000, then the spread								

IOSCITRM (A001h) IOSC Coarse Trim Register R/W 00000000 TB Protected

SSC[3-0] defines the spread spectrum sweep rate. If SSC[3-0] = 0000, then the spread spectrum is disabled.

SSA[1-0]	SSA[1-0] defines the amplitude of spread spectrum frequency change. The frequency is changed by adding SSA[1-0] range to actual IOSCVTRM[7-0]. SSA[1-0] = 11, +/- 32 SSA[1-0] = 10, +/- 16 SSA[1-0] = 01, +/- 8
	SSA[1-0] = 00, +/-4
ITRM[1-0]	ITRM[1-0] is the coarse trimming of the IOSC.

IOSCVTRM (A002h) IOSC Fine Trim Register WO 10001110 TB Protected

	7	6	5	4	3	2	1	0
RD	IOSCVTRM[7-0]							
WR		IOSCVTRM[7-0]						

This register provides fine trimming of the IOSC frequency. The higher the value of IOSCVTRM, the lower the frequency is.

The manufacturer trim value is stored in IFB and is trimmed to 16MHz. The user program provides the freedom to set the IOSC at a preferred frequency as long as the program is able to calibrate the frequency. Once set, the IOSC frequency has accuracy deviation within +/- 2% over the operation conditions. The following lists the range of the typical IOSC frequency for each trimming setting.

ITRM[1-0]=00, F_IOSC= 14.0MHz - 9.5MHz - 7.0MHz (VTRM[7-0]= 00 - 80 - FF)

ITRM[1-0]=01, F_IOSC= 18.0MHz - 12.5MHz - 9.3MHz (VTRM[7-0]= 00 - 80 - FF)

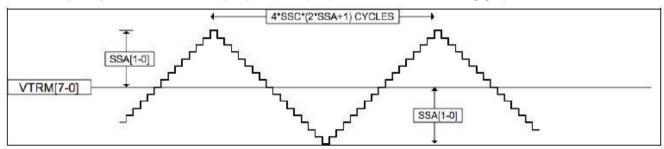
ITRM[1-0]=10, F_IOSC= 22.0MHz - 15.5MHz - 11.5MHz (VTRM[7-0]= 00 - 80 - FF)

ITRM[1-0]=11, F_IOSC= 25.5MHz - 18.5MHz - 13.5MHz (VTRM[7-0]= 00 - 80 - FF)

The trimming of the IOSC should use the following procedure to obtain the default setting for 16MHz.

Set ITRM = 01, and

Set VTRM = 00, measure frequency

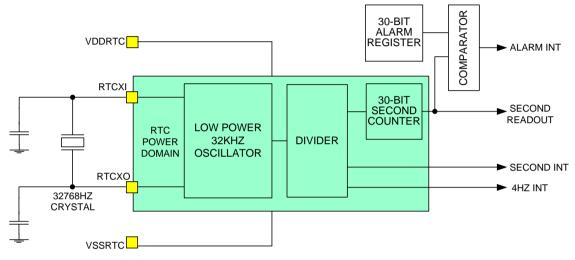

Set VTRM = FF, measure frequency

Set VTRM = 7F, measure frequency

Use binary search to obtain the closest setting for 16MHz

Note: The frequency versus VTRM setting is monotonic. When VTRM = 00, the frequency is highest, and when VTRM = FF, the frequency is lowest.

A hardware Spread Spectrum can be enabled for the IOSC. This is controlled by SSC[3-0]. When SSC[3-0] = 0, the spread spectrum is disabled, and IOSC functions normally as a fixed frequency oscillator. If SSC[3-0] is not 0, then Spread Spectrum is enabled and IOSC frequency is swept according to the setting of SSC[3-0] and SSA[1-0]. The spread is achieved by varying the actual VTRM output to the oscillator circuit thus effectively changes the oscillation frequency. The effect of SSC[3-0] and SSA[1-0] is shown in the following graph.


When Spread Spectrum is enabled, the actual controlling output to IOSC is VTRM[7-0] +/- SSA. This is shown in the graph above as the bold curve. The above example shows SSA[1:0] = 01, and the deviation is +/- 8. SSC[3-0] defines the update time in IOSC cycles. Then we can calculate the period of a complete sweep is 4*SSC*(2SSA+1) IOSC cycles, and we can obtain the sweep frequency from this period. When SS is enabled, the frequency of IOSC varies according to time and setting, therefore, the accuracy of IOSC frequency cannot be guaranteed. Please also note that VTRMOUT is VTRM[7-0] +/- SSA but is bounded by 0 and 255. Therefore for a linear non-clipped sweep, VTRM[7-0] needs to be within the range of SSA – 256-SSA, for example, SSA[10] = 01,

then SSA is 8. VTRM[7-0] should be in the range from 8 to 248 to prevent the sweep from being clipped. As Spread Spectrum suggests, the total EMI energy is not reduced, but the energy is spread over wider frequency. It is recommended that SS usage should be carefully evaluated and the setting of spread amplitude and the sweep frequency should be chosen carefully for reducing EMI effect.

3.4 Real Time Clock (RTC)

The on-chip RTC contains an ultra low power 32K clock oscillator (typically consuming less than 1uA) and a 30-Bit SECOND counter, along with a 30-Bit ALARM register, and a 30-bit comparator that generates RTC interrupts when the counter matches the alarm. In addition, it accommodates a 32K clock (RTCCLK) as an alternative system clock source. Also available from RTC is 4HZ, and 1Hz interrupt. The RTC oscillator and second counter are in independent RTC power domain supplied by VDDRTC. This ensures the RTC counting operation continuation under battery back-up condition. The RTC is always enabled. The block diagram of the RTC is shown in the following.

The oscillator output of 32768Hz goes into a 16-bit divider counter (RTCCNT[15-0]). This counter provides 4Hz and 1Hz clocks for interrupt purpose. The 1Hz clock also goes into a 30-bit SECOND counter (RTCSCND[29-0]). Both RTCCND and RTCSCND are read only and can be cleared to 0 by issuing a clear command through RTCCMD register. There is also a 30-bit alarm register (RTCALRM[29-0]). The alarm register provides a compare value with RTCSCND. When a match condition occurs, an alarm interrupt is triggered. The alarm register, RTCALRM, is accessed at the same address location as RTCSCND.

	7	6	5	4	3	2	1	0			
RD	SECINTEN	ALMINTEN	SECINT	ALMINT	4HZINTEN	4HZINT		-			
WR	SECINTEN	ALMINTEN	SECINT	ALMINT	4HZINTEN	4HZINT	-				
	SECINTEN RTC Second Interrupt Enable bit, Set to enable RTC second interrupt. When SECINTEN = 1, RTC generates an interrupt every second.										
	ALMINTEN Alarm Interrupt Enable bit. Set to enable alarm interrupt.										
	SECINT										

RTCCMD (0xA00E) RTC Configuration and Command Register RW 0000000

٧R	SECINTEN	ALMINTEN	SECINI	ALMINT	4HZINTEN	4HZIN I	-			
	SECINTEN	RTC Second	I Interrupt E	nable bit, Set	to enable RT(C second inte	errupt. When SECINTEN =			
		1, RTC gene	1, RTC generates an interrupt every second.							
	ALMINTEN	Alarm Interru	Alarm Interrupt Enable bit. Set to enable alarm interrupt.							
	SECINT	Second Inter	Second Interrupt bit. This bit must be cleared by software.							
	ALMINT	Alarm Interru	pt bit. This	bit must be cl	leared by softw	vare.				
	4HZINTEN	4Hz Interrup	t Enable bit	, Set to enable	e 4Hz interrupt	t.				
	4HZINT	4Hz Interrup by software.		hardware eve	ery 250 millise	cond if enable	ed. This bit must be cleared			

RTCSCND0 (0xA0008) RTC SECOND Counter Register 0 RW 00000000

	7	6	5	4	3	2	1	0		
RD	RTCSCND[7-0]									
WR		RTCALRM[7-0]								

This register holds the value for the SECOND counter bit 7 to 0 locations. This is read only . When written, it writes

into the ALARM register.

RTCSCND1 (0xA009) RTC SECOND Counter Register 1 RW 00000000

	7	6	5	4	3	2	1	0	
RD	RTCSCND[15-8]								
WR		RTCALRM[15-8]							

This register holds the value for the SECOND counter bit 15 to 8 locations. This is read only . When written, it writes into the ALARM register.

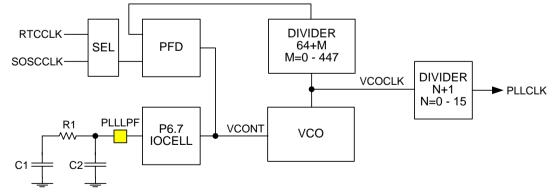
RTCSCND2 (0xA00A) RTC SECOND Counter Register 2 RW 00000000

	7	6	5	4	3	2	1	0	
RD	RTCSCND[23-16]								
WR				RTCALR	M[23-16]				

This register holds the value for the SECOND counter bit 23 to 16 locations. This is read-only . When written, it writes into the ALARM register.

RTCSCND3 (0xA00B) RTC SECOND Counter Register 3 RW 00000000

	7	6	5	4	3	2	1	0
RD	-		RTCSCND[29-24]					
WR	-	-	RTCALRM[29-24]					


This register holds the value for the SECOND counter bit 29 to 24 locations. This is read only . When written, it writes into the ALARM register.

3.5 Slow Internal Oscillator (SIOSC)

The SIOSC is a 32 KHz low power internal R/C oscillator. The oscillator consumes about 2uA and is always enabled. SIOSC can be used as system clock or as T5 clocking source to provide extended long period timing for wake up purpose. The accuracy of SIOSC is not guaranteed and typically lies within 20KHz to 50KHz, and variations temperature is about +/- 30%.

3.6 Phase Locked Loop (PLL)

The phase locked loop provides an alternative clock source for the system. The block diagram is shown in the following diagram. The PLL requires an external low-pass filter connected through ANIO of P6.7 IOCELL. Typical values of R1, C1, C2 are 1K, 0.1uF and 0.001uF. The selection of the PLL reference can either be RTC clock or slow IOSC clock (32K). The VCO has a frequency range of 2MHz to 16MHz. The multiplication factor of PLL output clock can be formulated by (M+64) / (N + 1) * CLK, where M = 0 - 447, and N = 0 - 15. If M is assigned with value larger than 448, the multiplication factor is clamped at 512.

The PLL can be enabled or disabled. When enabled, it consumes approximately 500uA. The stabilization time of PLL requires about 10msec (M=256), and the stabilization time increases with M increases. Software should allow more than 20msec for PLL stabilization.

PLLM (0xA036) PLL M Register RW 0000000 TB Protected

	7	6	5	4	3	2	1	0	
RD	PLLM[7-0]								
WR	PLLM[7-0]								

PLLN (0xA037) PLL N Register RW 00010001 TB Protected

	7	6	5	4	3	2	1	0	
RD	PLLEN	SEL	LPFCLMP	PLLM[8]	PLLN[3-0]				
WR	PLLEN	SEL	LPFCLMP	PLLM[8]	PLLN[3-0]				

 PLLEN
 PLL Enable

 LPFCLMP
 LPF Level Clamp

 LPFCLMP=1 will clamp the LPF (VCO control voltage) at approximately 1.2V. This prevents VCO from abnormal operations.

 SEL
 Reference Clock Select

 SEL=0 select RTCCLK

SEL=1 select SIOSC

3.7 Clock Output

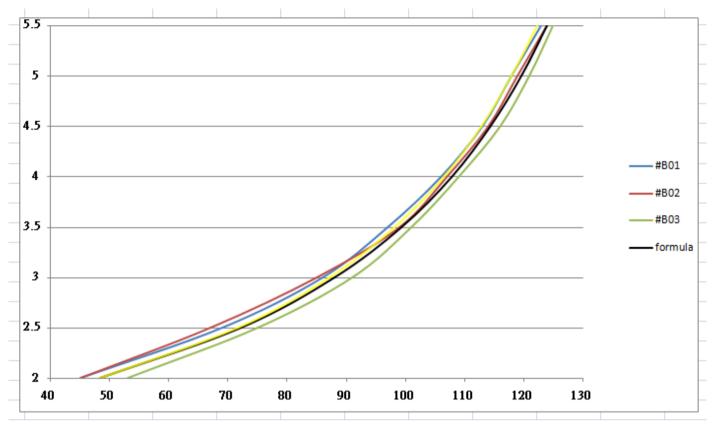
A clock output function is provided in CS5523. The clock sources can be set to RTC, SIOSC, IOSC/16 or PLL/16. The output is multiplexed through GPIO P6.6. The corresponding MFCFGP6.6 must be set correctly.

CLKOUT (A02Fh) Clock Output Control Register R/W 00000000

	7	6	5	4	3	2	1	0
RD	CLKOE	-	-	-	-	-	CLKSEL[1-0]	
WR	CLKOE	-	-	-	-	-	CLKSEL[1-0]	

CLKOE	Clock Output Enable
	CLKOE=1 will set GPIO6.6 as clock output
CLKSEL[1-0]	Clock Selection
	00 = RTC
	01 = SIOSC
	10 = IOSC/16
	11 = PLL/16

3.8 Supply Low Voltage Detection (LVD)


The supply Low Voltage Detection (LVD) circuit detects VDD < VTH condition and either generates a interrupt or reset condition. This provides an earlier detection point on unstable VDD supply. When used as system reset, it also forces the RSTN pin to low that extends the reset period. LVD defaults to disabled state to save power. An enabled LVD circuit consumes about 100uA to 200uA. The LVDTHD[6-0] sets the compare threshold from 0.25VDD to 0.50VDD against the internal band-gap reference voltage of 1.10V (Section 3.2). The detection threshold can be represented in the following equation when LVDTHV is the detection voltage.

VTH = BGREF/(0.168 + 0.55 *(128-LVDTH[6-0])/128)

Band-gap voltage suffers some chip-to-chip variations. The following graph shows the supply detection threshold of BGOUT of 1.10V, 1.15V and 1.20V. The vertical axis is the detection voltage and the horizontal axis is the LVDTHD[6-0] value in decimal. For rough detection, the user program can use BGOUT=1.15V as the nominal value and obtain the corresponding LVDTHD value from this graph for specific detection level. This may result approximately +/- 5% to +7% variations.

CS5523 PRELIMINARY

For very precise detection level, the manufacturing process stores the LVDTHD value for detection of 4.0V and 3.0V in IFB. The user program can then use these two values and obtain a real average BGOUT value using the above formula. Then use the real BGOUT value to obtain the specific LVDTHD value for an arbitrary detection level.

	7	6	5	4	3	2	1	0		
RD	LVDEN	LVREN	LVTEN	LVDFLTEN	RSTNFLTEN	LVDTHEN	-	LVTIF		
WR	LVDEN	LVREN	LVTEN	LVDFLTEN	RSTNFLTEN	LVDTHEN	-	LVTIF		
	LVDENLVD Enable bit. Set to turn on supply voltage detection circuits.LVRENLVR Enable bit. LVREN = 1 allows low voltage detect condition to cause a system reset.LVTENLVT Enable bit. LVTEN = 1 allows low voltage detect condition to generate an interrupt.LVDFLTENLVD Filter EnableLVDFLTENLVDFLTEN = 1 enables a noise filter on the supply detection circuits. The filter is set at around 30usec.									
	RSTNFLTEN RSTN Filter Enable RSTNFLTEN = 1 enables a noise filter on the RSTN circuits. The filter is set at around 30usec.									
	LVDTHEN LVD Hysteresis Enable LVDTHEN=1, when LVD is detected and auto asserted a new threshold defined by LVDTHH[6~0] replaces LVDTHD[6~0]. In typical applications, LVDTHH[6~0] should be set to be greater than LVDTHD[6~0].									
	to be greater than LVDTHD[6~0]. LVTIF Low Voltage Detect Interrupt Flag LVTIF is set by hardware when LVD detection occurs and must be cleared by software.									

LVDCF	G (A010h) Su	ipply Low Vo	oltage Detecti	on Configurati	on Register R	/W 10010000	TB Protected	d

LVDTHD (A011h) Supply Low Voltage Detection Threshold Register R/W X1111111 TB Protected

	7	6	5	4	3	2	1	0
RD	-	LVDTHD6	LVDTHD5	LVDTHD4	LVDTHD3	LVDTHD2	LVDTHD1	LVDTHD0
WR	-	LVDTHD6	LVDTHD5	LVDTHD4	LVDTHD3	LVDTHD2	LVDTHD1	LVDTHD0

LVDTHD = 00 will set the detection threshold at its minimum (approximately 1.8V), and LVDTHD = 7F will set the detection threshold at its maximum (approximately 4.5V).

LVDTHH (A015h) Supply Low Voltage Detection Threshold Hysteresis Register R/W X1111111 TB Protected

	7	6	5	4	3	2	1	0
RD	-	LVDTHH6	LVDTHH5	LVDTHH4	LVDTHH3	LVDTHH2	LVDTHH1	LVDTHH0
WR	-	LVDTHH6	LVDTHH5	LVDTHH4	LVDTHH3	LVDTHH2	LVDTHH1	LVDTHH0

To ensure a solid Low Voltage detect, a digital controlled hysteresis is used. If LVDTHEN=1, when LVD is asserted a new threshold defined by LVDTHH[6-0] replaces LVDTHD[6-0]. In typical applications, LVDTHH[6-0] should be set to be greater than LVDTHD[6-0].

4. <u>I²C Slave Controller 1 (I2CS1)</u>

The I²C Slave Controller 1 is a regular I²C Slave controller with enhanced functions such as clock-stretching and programmable hold time. These enhancements provide significant improvement on compatibilities. I2CS1 shares the SCL/SDA pins with the I2CM1. I2CS1 also can be configured to respond to two I²C addresses – I2CADR1 and I2CADR3. These two addresses can be enabled separately.

In receive mode, the controller detects a valid matching address and issues an ADDRMI interrupt. At the same time, the data bit on SDA line is shifted into receive buffer. The RCBI interrupt is generated whenever a complete byte is received and is ready to be read from I2CSDAT. If for any reason, the software does not respond to RCBI interrupt in time (i.e. RCBI is not cleared), and a new byte is received, the controller either forces an NACK response on I²C (if CLKSTREN bit is not set) or by pulling and holding SDA low (if CLKSTREN bit is set) to stretch the SCL low duration to force the master into a wait state. In clock stretching mode, SCL is released when the software responds to RCBI interrupt and cleared RCBI flag.

In transmit mode, the controller detects a valid matching address and issue an ADDRMI interrupt. At the same time, the data preloaded in the transmit data register through I2CSDAT is transferred to the transmit shift register and is serially shifted out onto SDA line. When this occurs, the controller generates a TXBI interrupt to inform the software that a new byte can be written into I2CSDAT. When the shift register is empty and ready for the next transmit, the slave controller checks if the new byte is written to the I2CSDAT. If TXBI is not cleared, it indicates lack of new data and the slave controller holds SCL line low to stretch the current clock cycle if CLKSTREN is set. If the clock stretching is not enabled, the slave controller takes the old byte into the shift register and replies with NACK, thus causing data corruption. On the other hand, if the master returns the NACK after the byte transfer, this indicates the end of data to the I²C slave. In this case, the I²C slave releases the data line to allow the master to generate a STOP or REPEAT START.

The I²C slave controller also implements the input noise spike filter, and this is enabled by INFILEN bit in the I2CSCON register. The filter is implemented using digital circuit. When INFILEN is set, the spikes less than 1/2 SYSCLK period on the input of SDA and SCL lines are filtered out. If INFILEN is low, no input filtering is done. The following registers are related to I²C Slave Controller. Also please note the I²C slave controller uses SYSCLK to sample the SCL and SDA signals, therefore, the maximum allowable I²C bus speed is limited to 1/4 SYSCLK with conforming data setup and hold times. If setup and hold time cannot be guaranteed, then it is recommended the bus speed is limited to 1/40 SYSCLK.

	7	6	5	4	3	2	1	0		
RD	-	-	-	START	-	-	-	XMT		
WR	I2CSRST	EADDRMI	ESTOPI	ERPSTARTI	ETXBI	ERCBI	CLKSTREN	INFILEN		
	I2CSRST	I ² C Slave Reset bit. Set this bit causes the Slave Controller to reset all internal state machine. Clear this bit for normal operations. Setting this bit clears the I2CSADR1 (I ² C slave address x).								
	EADDRMI	ADDRMI Interrupt Enable bit. Set this bit to set ADDRMI interrupt as the I ² C slave interrupt. This interrupt is generated when I ² C slave received a matching address.								
	ESTOPI	STOPI Inte	rrupt Enable	bit. Set this bit to	set STOPI	interrupt a	s the I ² C slave	interrupt.		
	ERPSTARTI	RPTSTARTI Interrupt Enable Bit. Set this bit to set RPTSTARTI interrupt as the I ² C slave interrupt.								
	ETXBI	TXBI Interrupt Enable bit Set this bit to allow TXBI interrupt as the I ² C slave interrupt.								
	ERCBI	RCBI Interrupt Enable bit. Set this bit to allow RCBI interrupt as the I ² C slave interrupt.								
	CLKSTREN						slave nsmit buffer is le loaded to transmit			
	INFILEN	Input Noise Filter Enable bit. Set this bit to enable the input noise filter of SDA and SCL lines. When the filter is enabled, it filters out the spike of less than 50nsec.								
;	START	SCL and SI	DA lines. Thi	is set when the s s bit is not very u . This read-only l	seful as the	start of tra	insaction can b	e indicated by		

I2CSCON1 (0xEB) I2CS1 Configuration Register R/W (0x00)

XMT

This bit is set by the controller when the I²C slave is in transmit operation; is clear when the I²C slave controller is in receive operation.

I2CSST1 (0xEC) I2CS1 Status Register R/W (0x00)

	, ,		1	,			-			
	7	6	5	4	3	2	1	0		
RD	FIRSTBT	ADDRMI	STOPI	RPSTARTI	TXBI	RCBI	SADR3M	NACK		
WR	-	ADDRMI	STOPI	RPSTARTI	HOLDT[3]	HOLDT[2]	HOLDT[1]	HOLDT[0]		
	FIRSTBT				ne data registe at byte of the ti					
		and gener	ated by the s	lave controller						
	ADDRMI				it. This bit is s					
			leared by soft		EADDMI is se	t, this generat	tes an interrup	t. This dit		
	STOPI				bit is set whe	n the slave co	ontroller detect	ts a STOP		
					This bit must I					
	RPTSARTI				bit. This bit is L and SDA lin					
	ТХВІ	Transmit I	Buffer Interrup	ot Flag. This b	it is set when t	he slave cont	roller is ready	to accept a		
		new byte for transmit. This bit is cleared when new data is written into I2CSDAT regionant controller puts new CBI Receiver Buffer Interrupt Flag bit. This bit is set when the slave controller puts new CBI Receiver Buffer Interrupt Flag bit.					•			
	RCBI									
		the I2CSDAT and ready for software-reading. This bit is cleared after the software reads I2CSDAT.								
	SARD3M				it is meaningf			i.		
					C address mat					
				ADDRMI is c	C address mat	iches with 120	SADR3.			
	NACK				ien the host re	sponds with N	NACK in the b	vte		
		transactio	n. This bit is c	only meaningfu	ul for slave-tra	nsmit operatio	on. Please not	e if the		
					e transaction,					
					mits the old da repeated until					
					when a new /					
	HOLDT[3-0]	These fou			f the periphera					
					s for minimum					
			• •	- /	nsec hold time is 20MHz, the	•		• •		
								$0 \equiv 0.$		

I2CSADR1 (0xED) I2CS1 Slave Address Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	-	-	-	-	-	-	-	-			
WR	I2CSEN		ADDR[6-0]								
I2CSEN ADDR[6-0]			Set this bit to enable the I ² C slave controller and ADDR[6-0] for address matching 7-bit slave address.								

I2CSDAT1 (0xEE) I2CS1 Data Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		I ² C Slave Receive Data Register							
WR	I ² C Slave Transmit Data Register								

I2CSADR3 (0x9E) I2CS1 2nd Slave Address Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	-	-	-	-	-	-	-	-		
WR	I2CSEN		ADDR[6-0]							
I2CSEN		note this c	Set this bit to enable the I ² C slave controller and ADDR[6-0] for address matching. Please note this can coexist with I2CSADR1.							
ADDR[6-0]		7-bit slave	e address.							

5. <u>I²C Slave Controller 2 (I2CS2)</u>

The I²C Slave Controller 2 has dual functions – as a debug port for communication with host or as a regular I²C slave port. Please note both functions can coexist. Also the I²C Slave controller support the clock stretching functions.

The debug accessed by the host is through I²C slave address defined by SI2CSDBGID register and enabled by DBGSI2C2EN=1. When I2CS2 received this address match, a DBG interrupt is generated. This is described in the Debug and ISP sections. If DBGSI2C2EN=0, then I2CS2 functions as a regular I²C slave. The address of the slave is set by I2CSADR2 register. The MSB in I2CSADDR2 is the enable bit for the I²C slave controller and I2CSADR2[6-0] specifies the actual slave address.

In receive mode, the controller detects a valid matching address and issues an ADDRMI interrupt. At the same time, the data bit on SDA line is shifted into receive buffer. The RCBI interrupt is generated whenever a complete byte is received and is ready to be read from I2CSDAT. If for any reason, the software does not respond to RCBI interrupt in time (i.e. RCBI is not cleared), and a new byte is received, the controller either forces an NACK response on I²C (if CLKSTREN bit is not set) or by pulling and holding SDA low (if CLKSTREN bit is set) to stretch the SCL low duration to force the master into a wait state. In clock stretching mode, SCL is released when the software responds to RCBI interrupt and cleared RCBI flag.

In transmit mode, the controller detects a valid matching address and issue an ADDRMI interrupt. At the same time, the data preloaded in the transmit data register through I2CSDAT is transferred to the transmit shift register and is serially shifted out onto SDA line. When this occurs, the controller generates a TXBI interrupt to inform the software that a new byte can be written into I2CSDAT. When the shift register is empty and ready for the next transmit, the slave controller checks if the new byte is written to the I2CSDAT. If TXBI is not cleared, it indicates lack of new data and the slave controller holds SCL line low to stretch the current clock cycle if CLKSTREN is set. If the clock stretching is not enabled, the slave controller takes the old byte into the shift register and replies with NACK, thus causing data corruption. On the other hand, if the master returns the NACK after the byte transfer, this indicates the end of data to the I²C slave. In this case, the I²C slave releases the data line to allow the master to generate a STOP or REPEAT START.

The I²C slave controller also implements the input noise spike filter. This is enabled by the INFILEN bit in the I2CSCON register. The filter is implemented using digital circuit. When INFILEN is set, the spikes under 1/2 EPPCLK period on the input of SDA and SCL lines are filtered out. If INFILEN is low, no input filtering is done. The following registers are related to I²C Slave Controller.

	7	6	5	4	3	2	1	0
RD	-	-	-	START	-	-	-	XMT
WR	I2CSRST	EADDRMI	ESTOPI	ERPSTARTI	ETXBI	ERCBI	CLKSTREN	INFILEN
	I2CSRST		lear this bit f	this bit causes th or normal operat				
	EADDRMI			le bit. Set this bit ed when I²C slav				lave interrupt.
	ESTOPI	STOPI Inter	rrupt Enable	bit. Set this bit to	set STOPI	interrupt a	s the I ² C slave	interrupt.
	ERPSTARTI	RPTSTAR1 interrupt.	I Interrupt E	nable Bit. Set thi	s bit to set F	RPTSTART	T interrupt as th	ne l ² C slave
	ETXBI	TXBI Interru	upt Enable bi	it Set this bit to a	llow TXBI in	terrupt as	the I ² C slave in	terrupt.
	ERCBI	RCBI Interr	upt Enable b	it. Set this bit to	allow RCBI	interrupt as	s the I ² C slave i	nterrupt.
	CLKSTREN			bit. Set to enabling is an optional				slave
		shifted out	only after the	otion is enabled (occurrence of c he programmer r	lock stretchi	ng, and the	e data cannot b	e loaded to
	INFILEN			e bit. Set this bit enabled, it filters				and SCL
	XMT			troller when the receive operatio		in transmit	operation; is c	lear when the

I2CSCON2 (0xDB) I2CS2 Configuration Register R/W (0x00)

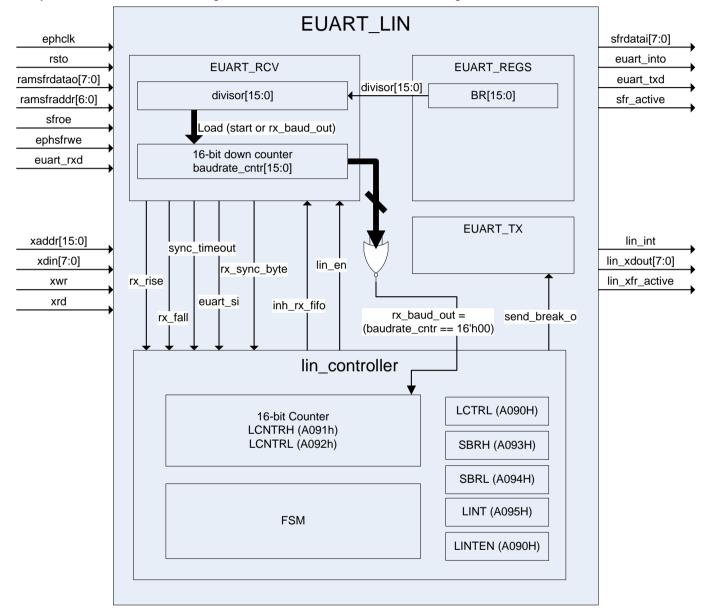
I2CSST2 (0xDC) I2CS2 Status Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	FIRSTBT	ADDRMI	STOPI	RPSTARTI	TXBI	RCBI	START	NACK			
WR	-	ADDRMI	STOPI	RPSTARTI	HOLDT[3]	HOLDT[2]	HOLDT[1]	HOLDT[0]			
	FIRSTBT	match. Th and gener	This bit is set to indicate the data in the data register as the first byte received after address match. This bit is cleared after the first byte of the transaction is read. The bit is read only and generated by the slave controller. Slave Address Match Interrupt Flag bit. This bit is set when the received address matches								
		the addres		2CSADR2. If							
:	STOPI			t Flag bit. This nd SDA lines.				ts a STOP			
l	RPTSARTI			Interrupt Flag tion on the SC							
-	ТХВІ	Transmit I	Buffer Interrup	ot Flag. This bi his bit is clear	t is set when t	the slave cont	roller is ready	to accept a			
ļ	RCBI	Receiver I	Buffer Interrup AT and ready	ot Flag bit. Thi y for software-	s bit is set whe	en the slave c	ontroller puts	new data in			
:	START	SCL and S	SDA lines. Th	is set when th is bit is not ver t. This read-or	ry useful as th	e start of trans	saction can be	indicated by			
	NACK HOLDT[3-0]	 NACK Condition. This bit is set when the host responds with NACK in the byte transact. This bit is only meaningful for slave-transmit operation. Please note if the master returns with NACK on the byte transaction, the slave does not upload new data into the shift reach the slave transmits the old data again as the next transfer, and this re-transmission continues if NACK is repeated until the transmission is successful and returned with AC This bit is cleared when a new ACK is detected or it can be cleared by software. These four bits define the hold time of the peripheral clock (EPPCLK) cycles between S to SCL. The I²C specification requires for minimum of 300nsec hold time, so the condit of "TEPPCLK*(HOLDT[3:0]+3) ≥ 300nsec hold time" equation must be met. For example the peripheral clock cycle (EPPCLK) is 20MHz, then HOLD[3-0] should be set to ≥ 3. 					transaction. er returns e shift register. smission I with ACK. e. etween SDA ne condition or example, if				

I2CSADR2 (0xDD) I2CS2 Slave Address Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	-	-	-	-	-	-	-	-
WR		12C	SEN			ADDI	R[6-0]	
I2CSENT	Set	this bit to ena	able the I ² C s	slave controll	er.			

I2CSENTSet this bit to enable the I2C slave controller.ADDR[6-0]7-bit slave address.


I2CSDAT2 (0xDE) I2CS2 Data Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		I ² C Slave Receive Data Register							
WR		I ² C Slave Transmit Data Register							

6. EUART2 with LIN Controller (EUART2)

LIN-capable 16550-like EUART2 is an enhanced UART controller (EUART) with separate transmit and receive FIFO. Both transmit and receive FIFO are 15-bytes deep and can be parameterized for interrupt triggering. The addition of FIFO significantly reduces the CPU load to handle high-speed serial interface. Transmit FIFO and receive FIFO have respective interrupt trigger levels that can be set based on optimal CPU performance adjustment. The EUART2 also has dedicated 16-bit Baud Rate generator and thus provides accurate baud rate under wide range of system clock frequency. The EUART2 also provides LIN extensions that incorporate message handling and baud-rate synchronization. The block diagram of EUART2 is shown in the following.

The following registers are used for configurations of and interface with EUART2.

SCON2 (0xC2) UART2 Configuration Register 00000000, R/W

ſ		7	6	5	4	3	2	1	0
	RD	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PERR	SP
	WR	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PE	SP

EUARTEN

Transmit and Receive Enable bit

Set to enable EUART2 transmit and receive functions: To transmit messages in the TX FIFO and to store received messages in the RX FIFO.

SB	Stop Bit Control
	Set to enable 2 Stop bits, and clear to enable 1 Stop bit.
WLS[1-0]	The number of bits of a data byte. This does not include the parity bit when parity is enabled.
	00 - 5 bits
	01 - 6 bits
	10 - 7 bits
	11 - 8 bits
BREAK	Break Condition Control Bit.
	Set to initiate a break condition on the UART interface by holding UART output at low until BREAK bit is cleared.
OP	Odd/Even Parity Control Bit
PE/PERR	Parity Enable / Parity Error status
	Set to enable parity and clear to disable parity checking functions. If read, PERR=1
	indicates a parity error in the current data of RX FIFO.
SP	Parity Set Control Bit
	When SP is set, the parity bit is always transmitted as 1.

SFIFO2 (0xA5) UART2 FIFO Status/Control Register 00000000 R/W

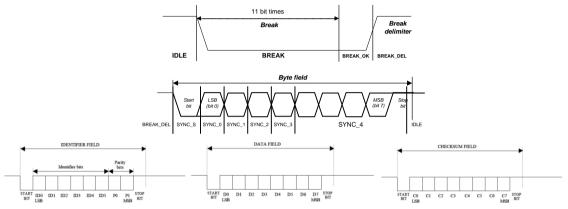
	7	6	5	4	3	2	1	0		
RD		RFL[3	-0]			TFL[3-0]			
WR		RFLT[3	3-0]			TFLT	[3-0]			
	RFL[3-0]	Current Re	ceive FIFO	level. This is	read only and	indicate the c	urrent receive	FIFO byte		
		count.								
	RFLT[3-0]			threshold. This an RFLT[3-0].	s is write-only.	RDA interrup	t will be genera	ated when		
		RFLT[3-0]			Descriptio	n				
		0000	RX FIFO	trigger level =	0					
		0001	RX FIFO	trigger level =	1					
		0010	RX FIFO	trigger level =	2					
		0011	RX FIFO	trigger level =	3					
		0100	RX FIFO trigger level = 4							
		0101	RX FIFO	trigger level =	5					
		0110	RX FIFO	trigger level =	6					
		0111	RX FIFO	trigger level =	7					
		1000	RX FIFO	trigger level =	8					
		1001	RX FIFO	trigger level =	9					
	1010 RX FIFO trigger level = 10									
		1011	RX FIFO	trigger level =	11					
		1100	RX FIFO	trigger level =	12					
		1101	RX FIFO	trigger level =	13					
		1110	RX FIFO	trigger level =	14					
		1111	Reserve	d						
	TFL[3-0]	Current Tra count.	Insmit FIFC	D level. This is	read only and	l indicate the o	current transmi	t FIFO byte		
	TFLT[3-0]			threshold. Thi [FLT[3-0].	s is write-only	. TRA interrup	ot will be gener	ated when		
		TFLT[3-0]			Descriptio	n		7		
			1					1		
		0001	TX FIFO	trigger level =	1			1		
		0010		trigger level =				1		
		0011	-	trigger level =						

0100	TX FIFO trigger level = 4
0101	TX FIFO trigger level = 5
0110	TX FIFO trigger level = 6
0111	TX FIFO trigger level = 7
1000	TX FIFO trigger level = 8
1001	TX FIFO trigger level = 9
1010	TX FIFO trigger level = 10
1011	TX FIFO trigger level = 11
1100	TX FIFO trigger level = 12
1101	TX FIFO trigger level = 13
1110	TX FIFO trigger level = 14
1111	TX FIFO trigger level = 15

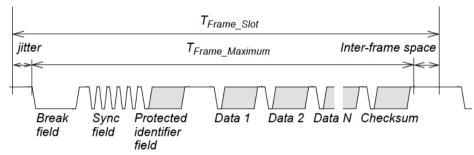
Receive and transmit FIFO can be reset by clear FIFO operation. This is done by setting BR[11-0]=0 and EUARTEN=0. This also clears RFO, RFU and TFO interrupt flags without writing the interrupt register. The LIN counter LCNTR is also cleared.

SINT2 (0xA7) UART2 Interrupt Status/Enable Register 00000000 R/W

	7	6	5	4	3	2	1	0		
RD	INTEN	TRA	RDA	RFO	RFU	TFO	FERR	TI		
WR	INTEN	TRAEN	RDAEN	RFOEN	RFUEN	TFOEN	FERREN	TIEN		
	INTEN	•	Enable bit. W nable UART2 i		r to disable inte	errupt. Default	is 0.			
	TRA/TRAEN	This bit i		nsmit FIFO ha	ns been emptie ically cleared v					
RDA/RDAENReceive FIFO is ready to be read. This bit is set by hardware when receive FIFO exceeds the FIFO threshold. Write "1" to enable interrupt. RDA will also be set when RFL < RFLT for bus idle duration longer than RFLT * 16 * Baud Rate. This is to inform software that there are still remaining unread received bytes in the FIFO. The flag is cleared when RFL < RFLT and writing "0" on the bit (the interrupts is disabled simultaneously)										
	RFO/RFOEN	Receive This bit i The flag	FIFO Overflow s set when over	erflow condition d by software,	n of receive Fl writing "0" on tion.					
	RFU/RFUEN	Receive This bit i The flag	FIFO Underflo s set when un	ow Enable bit derflow condit d by software,	ion of receive writing "0" on					
	TFO/TFOEN	Transmi This bit i The flag	t FIFO Overflo s set when over	w Interrupt En erflow conditic d by software,	able bit n of transmit F writing "0" on			/rite "1" to enable interrupt. errupt is disabled		
FERR/FERREN Framing Error Enable bit This bit is set when framing error occurs as the byte is received. Write "1" to enable in The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled										
	simultaneously). TI/TIEN Transmit Message Completion Interrupt Enable bit This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO becomes empty. Write "1" to enable interrupt. The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled simultaneously).									



SBUF2 (0xA6) UART2 Data Buffer Register 0x00 R/W

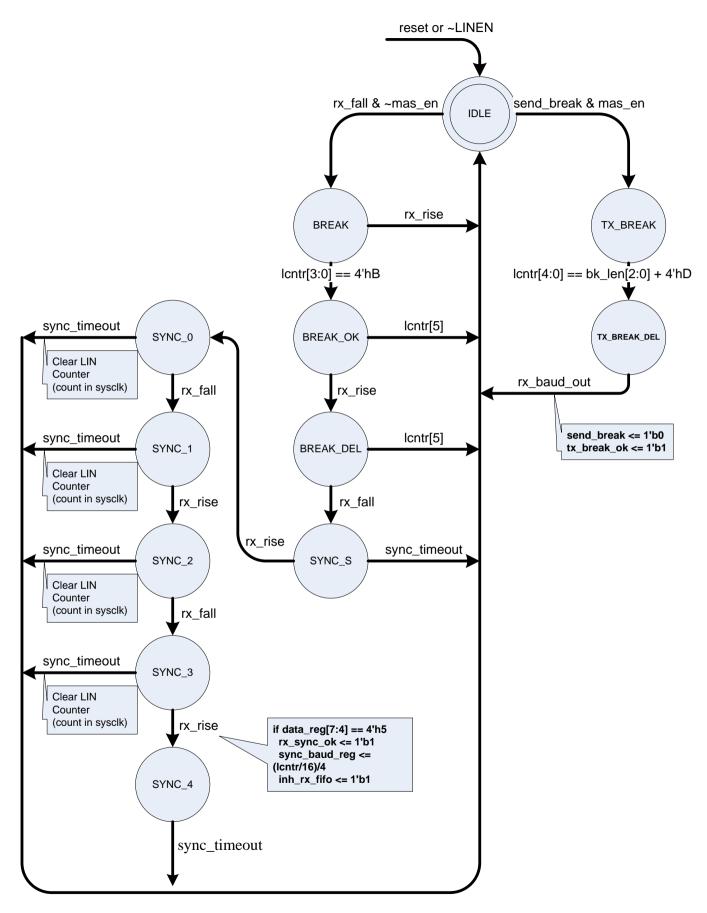

	7	6	5	4	3	2	1	0	
RD	EUART2 Receive Data Register								
WR	EUART2 Transmit Data Register								

This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

EUART2 can be configured to add LIN capability. The major enhancement of LIN includes master/slave configurations, auto baud-rate synchronization, and frame based protocol with header. Under LIN extension mode, all EUART2 registers and functions are still effective and operational. LIN is a single-wire bus and it requires external components to combine RX and TX signals externally. LIN is frame based and consists of message protocols with master/slave configurations. The following diagram shows the basic composition of a header message sent by the master. It starts with BREAK, the SYNC byte, ID bytes, DATA bytes, and CRC bytes.

A LIN frame structure is shown and the frame time matches the number of bits sent and has a fixed timing.

LIN bus protocol is based on frame. Each frame is partitioned into several parts as shown above. For master to initiate a frame, the software follows the following procedure.


Initiate a SBK command. (SW needs to check if the bus is in idle state, and there is no pending transmit data). Write "55" into TFIFO.

Write "PID" into TFIFO.

Wait for SBK to complete interrupts and then write the following transmit data if applicable. (This is optional). The following diagram shows Finite State Machine (FSM) of the LIN extension and is followed by registers within EUART2.

CS5523 PRELIMINARY

LINCTRL (0xA090) LIN Status/Control Register 0x00 R/W

	. ,		0									
	7	6	5	4	3	2	1	0				
RD	LINEN	MASEN	ASU	MASU	SBK		BL[2:0]					
WR	LINEN	MASEN	ASU	MASU	SBK		BL[2:0]					
	LINEN	LIN Ena	ble (1: Enable	/ 0: Disable)								
		LIN head	der detection /	transmission i	s functional wl	nen LINEN = 1	1.					
		💥 Befor	e enabling LIN	l functions, the	e EUART2 regi	sters must be	set correctly :	0xB0 is				
		recommended for SCON2.										
	MASEN											
		changeable only when LINEN = 0 (must clear LINEN before changing MASEN).										
	ASU	U Auto-Sync Update Enable (1: Enable / 0: Disable), Write Only If ASU is 1, the LIN controller will automatically overwrite BR[15-0] with SBR[15-0] and issue										
							0] with SBR[15	-0] and issue				
	an ASUI interrupt when received a valid SYNC field. If ASU is 0, the LIN controller will only notice the synchronized baud rate in SBR[15-0] by											
	issuing an RSI interrupt.											
		•	•		under UART m	node ASU.ca	pability is base	d on the				
			e containing B									
		-	-				ving frame, and	l is updated				
		frame by	/ frame.			-	-	·				
	MASU		e Auto Sync U									
							o sync update					
							ompleted. The	software				
	SBK		t MASU again eak (1: Send /		• •	n is desired.						
	SDK		•		• •	RK When LIN	EN and MASE	N are both 1				
							ant bits and 1					
							Break" status a					
							ancels the "Sen					
					ed automatica	Ily when the ti	ransmission of	Break				
			r is completed.									
	BL[2:0]		ength Setting									
		Break Le	ength = 13 + B	L[2:0]. Default	: BL[2:0] is 3'b(000.						
			aniatan Ilinh									

LINCNTRH (0xA091) LIN Timer Register High (0xFF) R/W

	7	6	5	4	3	2	1	0	
RD	LCNTR15-8]								
WR	LINTMR[15-8]								

LINCNTRL (0xA092) LIN Time Register Low (0xFF) R/W

	7	6	5	4	3	2	1	0	
RD	LCNTR[7-0]								
WR	LINTMR[7-0]								

LCNTR[15-0] is read only and is an internal 16-bit counter clocked by the baud rate clock. LINTMR[15-0] is write only and is the timer limit for LCNTR[15-0]. If MASEN=1 as LIN master mode, this timer is used to generate Frame time base. The internal counter LCNTR[15-0] is cleared whenever a "SEND BREAK" command is executed, and when the counter reaches LINTMR [15-0] (LCNTR[15-0] >= LINTMR[15-0]), a LCNTRO interrupt is generated. Thus the software can write a Frame Time value into LINTMR and use interrupts to initiate frames. If MASEN=0 as LIN slave mode, this timer is used for determining the accumulated bus idle time. The internal counter is cleared whenever a RX transition occurs. When the internal counter reaches LINTMR[15-0], an LCNTRO interrupt is generated. The software can use this interrupt to enter sleep mode by writing the required bus idling time into LINTMR[15-0].

LINSBRH (0xA093) EUART/LIN Baud Rate Register High byte (0x00) RO

	1	6	5	4	3	2	1	0	
RD	SBR[15-8]								

WR

BR	[15-8]	

LINSBRL (0xA094) EUART/LIN Baud Rate Register Low byte (0x00) RO

	7 6 5 4 3 2 1 0								
RD	SBR[7:0]								
WR	BR[7-0]								

SBR[15-0] The acquired Baud Rate under LIN protocol. This is read-only.

SBR[15-0] is the acquired baud rate from last received valid sync byte. SBR is meaningful only in LIN-Slave mode.

BR[15-0]

The Baud Rate Setting of EUART/LIN. This is write-only. BR[15-0] can not be 0. BUAD RATE = SYSCLK/BR[15-0].

When a slave receives a BREAK followed by a valid SYNC field, an RSI interrupt is generated and the acquired baud rate from SYNC field is stored in SBR[15-0]. The acquired baud rate is BAUD RATE = SYSCLK/SBR[15-0]. The software can just update this acquired value into BR[15-0] to achieve synchronization with the master. If Auto-Sync Update (ASU) register bit is enabled under LIN slave mode, LIN controller will automatically perform the update of BR[15-0] with SBR[15-0] and issue another ASUI interrupt when received a valid SYNC field.

	7	6	5	4	3	2	1	0			
RD	-	BITERR	LSTAT	LIDLE	ASUI	SBKI	RSI	LCNTRO			
WR	-	BITERR	-	-	ASUI	SBKI	RSI	LCNTRO			
	BITERR	Bit Error									
					ceived bit does			If BERIE=1,			
			-	•	. BITERR mu		by software.				
	LSTAT	LIN Bus Status bit (1: Recessive / 0: Dominant), Read only.									
		LSTAT = 1 indicates that the LIN bus (RX pin) is in recessive state.									
	LIDLE	LIDLE is 1 when LIN bus is idle and not transmitting/receiving LIN header or data									
		•	bytes. This bit read only. It is 1 when LINEN = 0. Auto-Sync Updated completion Interrupt (1: Set / 0: Clear)								
	ASUI			•	• •	,					
					synchronizatio		•				
					dware. It must		writing "1" on	the bit.			
	SBKI		•	•	(1: Set / 0: Cle	,		4			
		•			mpletes. It mus		y writing "1" in	the bit.			
	RSI		· ·		oit (1: Set / 0: C	,	-1. 16				
				valid Sync by	te is received f	ollowing a Bre	ak. It must be	cleared by			
	LCNTRO	•	I" in the bit.	Intorrunt hit (1	· Sot / 0: Cloor	۱					
	LUNIKU			• •	: Set / 0: Clear	,	aloorod by wr	iting "1" in			
		This flag is set when the LIN counter reaches 0xFFFF. It must be cleared by writing "1" in the bit									
	the bit.										

LININTEN (0xA096) LIN Interrupt Enable Register (0x00) R/W

	7	6	5	4	3	2	1	0		
RD	LINTEN	BERIE	-	EUARTOPL	ASUIE	SBKIE	RSIE	LCNTRIE		
WR	LINTEN	BERIE	BERIE - EUARTOPL ASUIE SBKIE RSIE LCNT							
	LINTEN ASUIE SBKIE RSIE LCNTRIE EUARTOPL BERIE	Set to er Auto-Syn Send Bro Receive LIN Cou EUART/	nable all LIN in nc Update Inte eak Completio Sync Complet nter Overflow LIN output pol	: Enable / 0: D Iterrupts. LINT Prrupt Enable (In Interrupt Enable Interrupt Enable arity Dele (1: Enable)	flags should t 1: Enable / 0: l able (1: Enable nable (1: Ena le (1: Enable /	Disable) e / 0: Disable) ble / 0: Disable	Ū	modifying.		

LINTCON (0xA0B0h) LIN TimeOut configuration R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	RXDTO[0]	TXIPOL	RXTOWKE	TXTOWKE	RXDD_F	TXDD_F	RXDDEN	TXDDEN		
WR	RXDTO[0]	TXIPOL	TXIPOL RXTOWKE TXTOWKE RXDD_F TXDD_F RXDDEN TXDDEN							
	RXDDEN	RXD Do	minant Fault I	nterrupt Enabl	е					
	RXDD_F	RXD Do	RXD Dominant Fault Interrupt Flag							
		RXDD_F	RXDD_F is set to 1 by hardware and must be cleared by software							
	TXDDEN	TXD Do	TXD Dominant Fault Interrupt Enable							
	TXDD_F	TXD Do	TXD Dominant Fault Interrupt Flag							
		TXDD_F	TXDD_F is set to 1 by hardware and must be cleared by software							
	TXTOWKE	TXD Dominant Timeout WakeUp Enable ,								
	RXTOWKE	RXD Do	RXD Dominant Timeout WakeUp Enable							
	TXIPO	TXD Dominant input polarity								

TXDTOL (0xA0B1h) LIN TXD Dominant TimeOut LOW Registers R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		TXDTO[7:0]							
WR		TXDTO[7:0]							

TXDTOH (0xA0B2h) LIN TXD Dominant TimeOut HIGH Registers R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		TXDTO[15:8]									
WR		TXDTO[15:8]									
	TXDTO TXD Dominant Time Out (TXDTO +1) * IOSCCLK										

RXDTOL (0xA0B3h) LIN RXD Dominant TimeOut LOW Registers R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		RXDTO[8:1]							
WR		RXDTO[8:1]							

RXDTOH (0xA0B4h) LIN RXD Dominant TimeOut HIGH Registers R/W (0x00)

	7	6	5	4	3	2	1	0		
RD		RXDTO[16:9]								
WR		RXDTO[16:9]								

RXDTO

0 RXD Dominant Time Out (RXDTO[16:0] +1) * IOSCCLK

BSDCLR (0xA0B5h) Bus Stuck Dominant Clear Width Registers R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		BSDCLR [7:0]									
WR		BSDCLR [7:0]									
	BSDCLR Bus Stuck Dominant Clear Time (BSDCLR +1) * SIOSCCLK										
	DSDULK DUS Sluck Dominani Clear Time (BSDULR +1) SIUSUULK										

BSDACT (0xA0B6h) Bus Stuck Dominant Active Width Registers R/W (0x00)

BD BSDACT [7:0]		7	6	5	4	3	2	1	0	
	RD		BSDACT [7:0]							

WR

BSDACT

BSDACT [7:0]

Bus Stuck Dominant Active Time (BSDCLR +1) * SIOSCCLK

BSDWKC (0xA0B7h) Bus Stuck Dominant Fault Wakeup configuration R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	BSDW_F	BFW_F	BSDWEN	BFWEN	WKFLT[3:0]				
WR	BSDW_F	BFW_F	BSDWEN	BFWEN	WKFLT[3:0]				
	WKFLT	LIN Wak	eUp time (WI	KFLT+2) * SIC	SCCLK, exce	pted the WKF	LT = 0 conditio	'n	
	BFWEN BFW_F BSDWEN TXDD_F	LIN WakeUp/Interrupt Enable LIN WakeUp Interrupt Flag BFW_F is set to 1 by hardware and must be cleared by software LIN Bus Stuck WakeUp/ Interrupt Enable LIN Bus Stuck WakeUp Interrupt Flag TXDD_F is set to 1 by hardware and must be cleared by software							

7. EUART3 and EUART4

EUART3 and EUART4 are standard enhanced UART with 4-byte transmit and 4-byte receive FIFO. The baud rate setting is 16-bit registers and thus can achieve precision baud rate with arbitrary system clock. The operations of the EUART3 and EUART4 are the same as EUART2 except lack of LIN support. The following registers are used for EUART3 and EUART4.

SCON3 (0xBC) EUART3 Configuration Register 00000000, R/W

	\	0		· · · · · · · · · · · · ,	-					
	7	6	5	4	3	2	1	0		
RD	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PERR	SP		
WR	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PE	SP		
	EUARTEN	Transmi	Transmit and Receive Enable bit							
			Set to enable EUART2 transmit and receive functions: To transmit messages in the TX							
		FIFO and to store received messages in the RX FIFO.								
	SB	Stop Bit	Stop Bit Control							
		Set to enable 2 Stop bits, and clear to enable 1 Stop bit.								
	WLS[1-0]	The num	The number of bits of a data byte. This does not include the parity bit when parity is enabled.							
		00 - 5 bi	00 - 5 bits							
		01 - 6 bi	01 - 6 bits							
		10 - 7 bi	10 - 7 bits							
		11 - 8 bi	ts							
	BREAK	Break C	ondition Contro	ol Bit.						
		Set to in	itiate a break o	condition on th	e UART interfa	ace by holding	UART output	at low until		
		BREAK	bit is cleared.							
	OP	Odd/Eve	en Parity Contr	ol Bit						
	PE/PERR	Parity Er	nable / Parity E	Error status						
		Set to enable parity and clear to disable parity checking functions. If read, PERR=1								
		indicates a parity error in the current data of RX FIFO.								
	SP	Parity Se	et Control Bit							
		When S	P is set, the pa	arity bit is alwa	ys transmitted	as 1.				

SFIFO3 (0xBD) EUART3 FIFO Status/Control Register 00000000 R/W

	7	6	5	4	2	1	0		
RD		RFL[3-	0]			TFL	[3-0]		
WR		RFLT[3	-0]			TFLT	[3-0]		
	RFL[3-0]	Current Re	ceive FIFO	level. This is	read only and	indicate the cu	urrent receive l	FIFO byte	
		count.							
	RFLT[3-0]				s is write-only.	RDA interrupt	will be genera	ted when	
			<u> </u>	n RFLT[3-0].				-	
		RFLT[3-0]			Descriptior	ו			
		0000	RX FIFO	trigger level =	0				
		0001	RX FIFO	trigger level =	1				
	0010 RX FIFO trigger level = 2								
		0011	RX FIFO	trigger level =	3				
	1000 - 1111 Reserved								
	TFL[3-0]	Current Tra	ansmit FIFO	level. This is	read only and	indicate the c	urrent transmit	FIFO byte	
		TFL[3-0] Current Transmit FIFO level. This is read only and indicate the current transmit FIFO byte count.							
	TFLT[3-0]	FLT[3-0] Transmit FIFO trigger threshold. This is write-only. TRA interrupt will be generated when TFL[3=0] is less than TFLT[3-0].							
		TFLT[3-0]			Descriptior	1			
		0001	TX FIFO	trigger level =	1				
	0010 TX FIFO trigger level = 2								

0

0011	TX FIFO trigger level = 3
0100	TX FIFO trigger level = 4
0101 - 1111	Reserved

Receive and transmit FIFO can be reset by clear FIFO operation. This is done by setting EUARTEN=0. This also clears RFO, RFU and TFO interrupt flags without writing the interrupt register.

SBUF3 (0xBE) EUART3 Data Buffer Register 0x00 R/W

	7	6	5	4	3	2	1	0	
RD	EUART3 Receive Data Register								
WR	EUART3 Transmit Data Register								

This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

SINT3 (0xBF) EUART3 Interrupt Status/Enable Register 00000000 R/W

	7	6	5	4	3	2	1	0	
RD	INTEN	TRA	RDA	RFO	RFU	TFO	FERR	TI	
WR	INTEN	TRAEN	RDAEN	RFOEN	RFUEN	TFOEN	FERREN	TIEN	
	INTEN TRA/TRAEN	Set to er Transmit	FIFO is ready	nterrupt. Clear	r to disable inte				
This bit is set when transmit FIFO has been emptied below FIFO thre enable interrupt. The flag is automatically cleared when the conditionRDA/RDAENReceive FIFO is ready to be read. This bit is set by hardware when receive FIFO exceeds the FIFO thre enable interrupt. RDA will also be set when RFL < RFLT for bus idle RFLT * 16 * Baud Rate. This is to inform software that there are still received bytes in the FIFO. The flag is cleared when RFL < RFLT and writing "0" on the bit (the ir 							ition is absent. threshold. Wr idle duration k still remaining	ite "1" to onger than unread	
	RFO/RFOEN	Receive This bit i The flag	Receive FIFO Overflow Enable bit This bit is set when overflow condition of receive FIFO occurs. Write "1" to enable interrupt. The flag can be cleared by software writing "0" on the bit (the interrupt is disabled simultaneously), or by FIFO reset action.						
	RFU/RFUEN	This bit i The flag	can be cleare	derflow conditi	on of receive I writing "0" on t tion.				
	TFO/TFOEN	Transmit This bit i The flag	FIFO Overflo s set when over can be cleare	w Interrupt En erflow conditio d by software,	able bit n of transmit F writing "0" on				
	simultaneously), or by FIFO reset action. FERR/FERREN Framing Error Enable bit This bit is set when framing error occurs as the byte is received. Write "1" to enable into The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled simultaneously).								
TI/TIEN Transmit Message Completion Interrupt Enable bit This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO becomes empty. Write "1" to enable interrupt. The flag must be cleared by software, w "0" on the bit (the interrupt is disabled simultaneously).									
SBAU	D3H (0xA0A1)	EUART3 Ba	ud Rate Regi	ster High byte	e (0x00) RW				

	(,			(0.000)		
	7	6	5	4	3	2	1
RD				BR3[15-8]		

WR				BR3	15-8]							
			ud Rate Regis		-							
SDAU			5	-		2	1	0				
	1	6	5	4	3	Z	1	0				
RD			BR3[7-0]									
WR			BR3[7-0] The Baud Rate Setting of EUART3. BR3[15-0] can not be 0. BUAD RATE =									
	BR3[15-0]		id Rate Setting (/BR[15-0].	g of EUART3. I	BR3[15-0] can	not be 0. BU	AD RATE =					
	EUART4 has the same operation as EUART3 and its related registers are described below.											
SCON	SCON4 (0x9C) EUART4 Configuration Register 00000000, R/W											
	7 6 5 4 3 2 1 0											
RD	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PERR	SP				
WR	EUARTEN	SB	WLS[1]	WLS[0]	BREAK	OP	PE	SP				
	SB WLS[1-0]	Stop Bit Set to er	Control hable 2 Stop b ber of bits of a ts ts ts	its, and clear t	s in the RX FIF o enable 1 Stop is does not incl	o bit.	y bit when parit	y is enabled.				
	BREAK Break Condition Control Bit. Set to initiate a break condition on the UART interface by holding UART output at low until BREAK bit is cleared. OP Odd/Even Parity Control Bit PE/PERR Parity Enable / Parity Error status Set to enable parity and clear to disable parity checking functions. If read, PERR=1 indicates a parity error in the current data of RX FIFO.											
SFIFO	SP 4 (0x96) EUA	Parity Se When S	et Control Bit	arity bit is alwa	ys transmitted							

	7	6	5	4	3	2	1	0		
RD		RFL[3	-0]		TFL[3-0]					
WR		RFLT[3-0]		TFLT[3-0]					
	RFL[3-0]	Current R	eceive FIFO	level. This is	read only and	indicate the cu	urrent receive	FIFO byte		
	RFLT[3-0]	RFLT[3-0] Receive FIFO trigger threshold. This is write-only. RDA interrupt will be generated when RFL[3-0] is greater than RFLT[3-0].								
		RFLT[3-0] Description								
		0000 RX FIFO trigger level = 0								
		0001	RX FIFO	trigger level =	1					
		0010	RX FIFO	trigger level =	2					
		0011	RX FIFO	trigger level =	3			1		
		1000 - 1111	Reserved	ł						
	TFL[3-0] Current Transmit FIFO level. This is read only and indicate the current transmit FIFO byte count.									
	TFLT[3-0]		FIFO trigger		s is write-only	TRA interrupt	t will be genera	ated when		

TFLT[3-0]	Description
0001	TX FIFO trigger level = 1
0010	TX FIFO trigger level = 2
0011	TX FIFO trigger level = 3
0100	TX FIFO trigger level = 4
0101 - 1111	Reserved

Receive and transmit FIFO can be reset by clear FIFO operation. This is done by setting EUARTEN=0. This also clears RFO, RFU and TFO interrupt flags without writing the interrupt register.

SBUF4 (0x97) EUART4 Data Buffer Register 0x00 R/W

	7	6	5	4	3	2	1	0	
RD	EUART4 Receive Data Register								
WR	EUART4 Transmit Data Register								

This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

SINT4 (0x9A) EUART4 Interrupt Status/Enable Register 00000000 R/W

	7	6	5	4	3	2	1	0					
RD	INTEN	TRA	RDA	RFO	RFU	TFO	FERR	TI					
WR	INTEN	TRAEN	RDAEN	RFOEN	RFUEN	TFOEN	FERREN	TIEN					
	INTEN TRA/TRAEN	Interrupt Set to er	Interrupt Enable bit. Write only Set to enable UART2 interrupt. Clear to disable interrupt. Default is 0. Transmit FIFO is ready to be filled.										
	RDA/RDAEN	This bit is enable ir Receive This bit is enable ir RFLT * 1 received	This bit is set when transmit FIFO has been emptied below FIFO threshold. Write "1" to enable interrupt. The flag is automatically cleared when the condition is absent. Receive FIFO is ready to be read. This bit is set by hardware when receive FIFO exceeds the FIFO threshold. Write "1" to enable interrupt. RDA will also be set when RFL < RFLT for bus idle duration longer than RFLT * 16 * Baud Rate. This is to inform software that there are still remaining unread received bytes in the FIFO. The flag is cleared when RFL < RFLT and writing "0" on the bit (the interrupts is disabled										
	RFO/RFOEN	simultan Receive This bit is The flag	simultaneously) Receive FIFO Overflow Enable bit This bit is set when overflow condition of receive FIFO occurs. Write "1" to enable interrupt. The flag can be cleared by software writing "0" on the bit (the interrupt is disabled										
	RFU/RFUEN	Receive This bit is The flag	simultaneously), or by FIFO reset action. Receive FIFO Underflow Enable bit This bit is set when underflow condition of receive FIFO occurs. Write "1" to enable interrupt. The flag can be cleared by software writing "0" on the bit (the interrupt is disabled										
	TFO/TFOEN	Transmit This bit is The flag	simultaneously), or by FIFO reset action. Transmit FIFO Overflow Interrupt Enable bit This bit is set when overflow condition of transmit FIFO occurs. Write "1" to enable interrupt. The flag can be cleared by software, writing "0" on the bit (the interrupt is disabled simultaneously), or by FIFO reset action.										
	FERR/FERRE	N Framing This bit is The flag	Framing Error Enable bit This bit is set when framing error occurs as the byte is received. Write "1" to enable interrupt. The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled										
	TI/TIEN	Transmit This bit is becomes	simultaneously). Transmit Message Completion Interrupt Enable bit This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO becomes empty. Write "1" to enable interrupt. The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled simultaneously).										

SBAUD4H (0xA0A3) EUART4 Baud Rate Register High byte (0x00) RW

	7	6	5	4	3	2	1	0		
RD	BR4[15-8]									
WR	BR4[15-8]									

SBAUD4L (0xA0A4) EUART4 Baud Rate Register Low byte (0x00) RW

	7	6	5	4	3	2	1	0			
RD		BR4[7-0]									
WR		BR4[7-0]									
	BR4[15-0] The Baud Pate Setting of ELIAPT4_BR4[15-0] can not be 0_BLIAD PATE -										

BR4[15-0]

The Baud Rate Setting of EUART4. BR4[15-0] can not be 0. BUAD RATE = SYSCLK/BR[15-0].

8. <u>Serial Peripheral Interface (SPI)</u>

The Serial Peripheral Interface (SPI) is an enhanced synchronous serial hardware which is compatible with Motorola's SPI specifications. The SPI Controller includes 4-bytes FIFO for both transmit and receive. SPI Interface uses Master-Out-Slave-In (MOSI), Master-In-Slave-Out (MISO), Serial Clock (SCK) and Slave Select (SSN) for interface. SSN is low active and only meaningful in slave mode.

	7	6	5	4	3	2	1	0
RD	SPIE	SPEN	MSTR	CPOL	CPHA	SCKE	-	-
WR	SPIE	SPEN	MSTR	CPOL	CPHA	SCKE	-	-
CDIC CDI interface Interrupt Enchla hit								

SPIE SPI interface Interrupt Enable bit.

SPEN SPI interface Enable bit.

MSTR SPI Master/Slave Switch.(set as a master; clear as a slave)

CPOL SPI interface Polarity bit: Set to configure the SCK to stay HIGH while the SPI interface is idling and clear to keep it LOW.

CPHA Clock Phase Control bit: If CPOL=0, set to shift output data at rising edge of SCK, and clear to shift output data at falling edge of SCK. If CPOL=1, set to shift output data at falling edge of SCK and clear to shift output data at rising edge of SCK.

In Slave mode, the sampling phase is determined by the combinations of CPOL and CPHA setting shown in the following table.

CPOL	CPHA	(Slave mode) SCK edge used for sampling input data	Data shift out
0	0	Rising edge	Falling edge
0	1	Falling edge	Rising edge
1	0	Falling edge	Rising edge
1	1	Rising edge	Falling edge

SPIMR (0xA2) SPI Mode Control Register R/W (0x00)

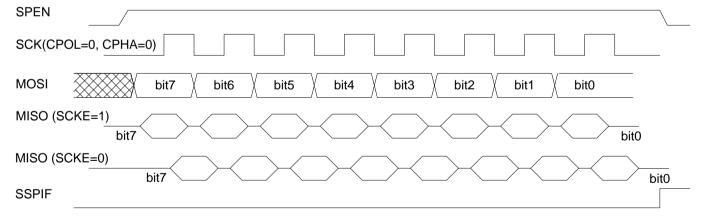
	7	6	5	4	3	2	1	0
RD	ICNT1	ICNT0	FCLR	-	SPR[2]	SPR[1]	SPR[0]	DIR
WR	ICNT1	ICNT0	FCLR	-	SPR[2]	SPR[1]	SPR[0]	DIR

ICNT1, ICNT0	FIFO Byte Count Threshold.
	This sets the FIFO threshold for generating SPI interrupts.
	00 –the interrupt is generated after 1 byte is sent or received;
	01 –the interrupt is generated after 2 bytes are sent or received;
	10 –the interrupt is generated after 3 bytes are sent or received;
	11 –the interrupt is generated after 4 bytes are sent or received.
FCLR	FIFO Clear/Reset
	Set to clear and reset transmit and receive FIFO
SPR[2-0]	SPI Clock Rate Setting. This is used to control the SCK clock rate of SPI interface.
	000 –SCK = SYSCLK/6;
	001 – SCK = SYSCLK/8;
	010 - SCK = SYSCLK/16;
	011 – SCK = SYSCLK/32;
	100 – SCK = SYSCLK/64;
	101 – SCK = SYSCLK/128;
	110 – SCK = SYSCLK/256;
	111 – SCK = SYSCLK/512.
DIR	Transfer Format
	DIR=1 uses MSB-first format.
	DIR=0 uses LSB-first format.

SCKE Clock Selection bit in Master Mode: Set to use rising edge of SCK to sample the input data. Clear to use falling edge of SCK to sample the input data.

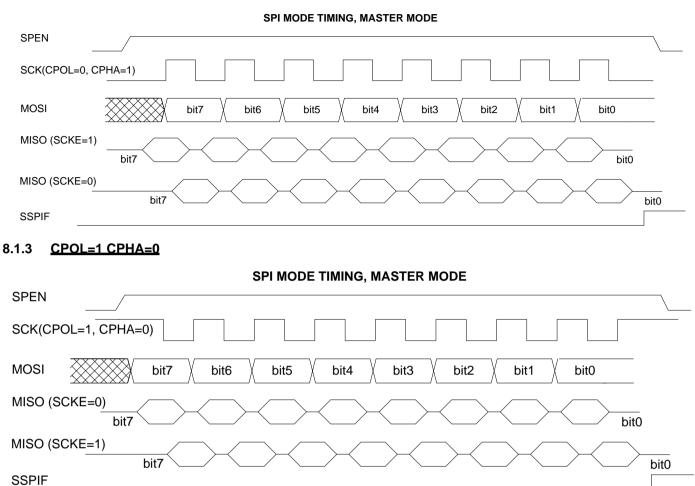
SPIST (0xA3) SPI Status Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	SSPIF	ROVR	TOVR	TUDR	RFULL	REMPT	TFULL	TEMPT			
WR	SSPIF	ROVR	TOVR	TUDR	-	-	-	-			
	SSPIF SPI Interrupt Flag bit. Set by hardware to indicate the completion of data transfer. Clear by assigning this bit to 0 or disabling SPI.										
	ROVR Receive FIFO-overrun Error Flag bit. When Receiver FIFO Full Status occurs and SPI receives new data, ROVR is set and generates an interrupt. Clear by assigning this bit to 0 or disabling SPI.										
	TOVR	Ū Ū									
	TUDR										
	RFULL	Receive	FIFO Full Sta	tus bit . Set wl	hen receiver F	IFO is full. Rea	ad only.				
	REMPT				when receive	•					
	TFULL				t when transfe		•				
	TEMPT Transmitter FIF0 Empty Status bit . Set when transfer FIFO is empty. Read only.										
	TA (0 A 4) CI			A							

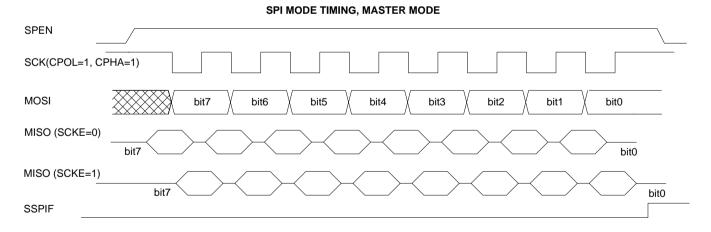

SPIDATA (0xA4) SPI Data Register R/W (0xXX)

	7	6	5	4	3	2	1	0		
RD	SPI Receive Data Register									
WR		SPI Transmit Data Register								

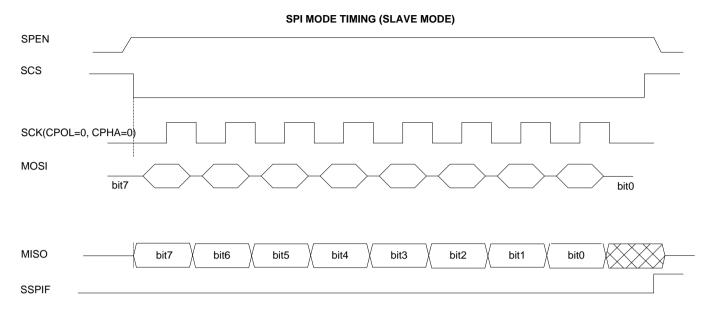
8.1 SPI Master Timing Illustration

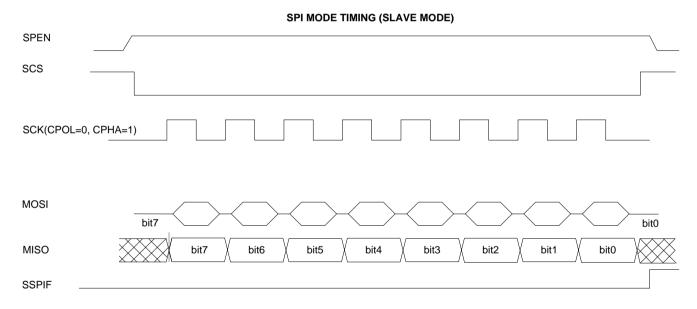

8.1.1 <u>CPOL=0 CPHA=0</u>

SPI MODE TIMING, MASTER MODE



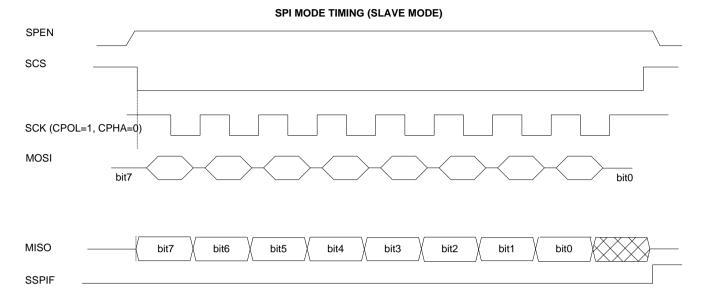
8.1.2 <u>CPOL=0 CPHA=1</u>


8.1.4 <u>CPOL=1 CPHA=1</u>

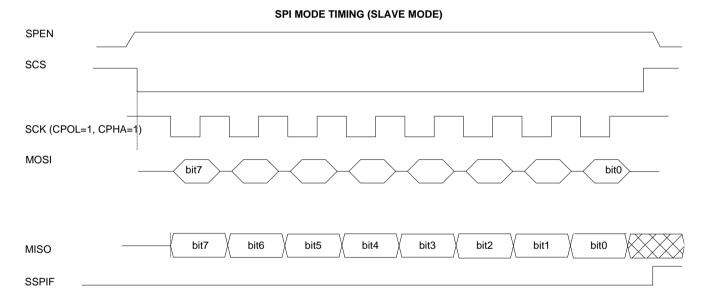


8.2 SPI Slave Timing Illustration

8.2.1 <u>CPOL=0 CPHA=0</u>

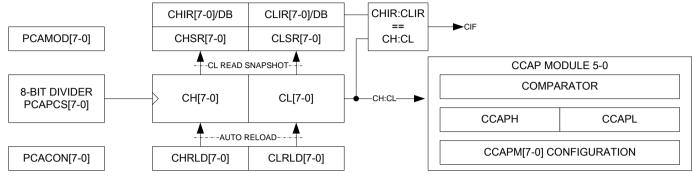


8.2.2 <u>CPOL=0 CPHA=1</u>



8.2.3 <u>CPOL=1 CPHA=0</u>

8.2.4 <u>CPOL=1 CPHA=1</u>



Revision V0.94, 2018/05/11

9. Programmable Counter Array (PCA) and Compare/Capture/PWM (CCP)

The PCA provides enhanced timing functions with less CPU intervention than the standard 8051 timers T0, T1, and T2. The PCA is partitioned in three parts. The main PCA Counter consists of CH and CL. There are 6 channels of Compare/Capture/PWM modules.

The MAIN COUNTER (CH and CL) is configured and controlled by two registers, CMOD and PCACON. The counter value is accessed by CH and CL registers .The counter can be configured as either FREE-RUN or AUTO-RELOADED mode. The counter values of CH and CL can be captured in CHSR and CLSR triggered by software or hardware. There is also a counter compare register CHIR and CHLR. An interrupt can be enabled at CH:CL == CHIR:CLIR. This allows the PCA to easily synchronize with the software control. CHIR and CLIR are double-buffered.

PCAPCS (0xA0A5) PCA Counter Clock Scaling Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	PCACPS[7-0]									
WR		PCACPS[7-0]								

PCACPS sets the clock input to the PCA at SYSCLK/(PCACS[7-0]+1).

PCAMOD (0xD1) PCA Mode Control Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	CIDL	RLDEN	COUNT8	OVF8EN	PCAEN	ECF	CIFEN	CMPTRIG			
WR	CIDL	RLDEN	COUNT8	OVF8EN	PCAEN	ECF	CIFEN	CMPTRIG			
	CIDL Counter Control bit in IDLE mode When CIDL=1, PCA counting is disabled in IDLE mode. When CIDL=0, normal counting of PCA in IDLE mode persists. PCAEN needs to be 1 for counting. RLDEN: AUTO-RELOAD Mode Enable bit Set RLDEN=1to enable AUTO-RELOAD mode. At overflow, the main counter is reloaded with CHRL and CHRH in 16-bit mode or CHRL in 8-bit mode. When RLDEN=0: FREE-RUN mode. COUNT8 8-Bit or 16-Bit Counter Mode Select bit										
	COUNT8 8-Bit or 16-Bit Counter Mode Select bit When COUNT8=1 the PCA is configured as an 8-Bit counter. In 8-bit counter mode, OVF8EN must be set as 1.							mode,			
	OVF8EN COUNT8=0 the PCA is configured as a16-Bit counter OVF8EN 8-Bit Overflow Enable bit When OVF8EN=1, the PCA overflow condition occurs at 0xXXFF to 0xXX00. In other words, the overflow condition (CF flag) is set every 256 count. This overflow condition also applies to the 16-bit counter mode.							ondition also			
	 When OVF8EN=0 the PCA overflow condition occurs at 0xFFFF to 0X0000. This does now ork in 16-bit counter mode. PCAEN PCA counter Enable bit Set PCAEN=1 to enable the PCA counter Set PCAEN=0 to disable the PCA and also clears the counter value. When PCAEN=0, a double buffer is loaded with reload values. 										

ECF	Counter Overflow Interrupt Flag bit When ECF=1 the overflow condition interrupt is enabled. When ECS=0 the overflow interrupt is disabled.
CIFEN	Count Compare Interrupt Enable Set IFEN=1 to enable CHIR:CLIR == CH:CL interrupt
CMPTRIG	Set IFEN=0 to disable this interrupt Comparator Trigger Enable CMPTRIG=1 enables the snapshot of PCA count value into CHSR by analog comparator interrupt. CMPTRIG=0 disables the triggering.

PCACON (0xE1) PCA Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	CF	CIF	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
WR	CF	CIF	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
	CF	Counter C	Overflow Flag	bit				

	5
	CF is set to 1 by hardware when overflow condition occurs. The overflow condition occurs
	at either of 0xFFFF to 0x0000 (OVF8EN=0) or 0xXXFF to 0xXX00 (OVF8EN=1). This bit
	must be cleared by software.
CIF	Count Compare Flag bit
	CIF is set by hardware when CH:CL == CHIR:CLIR. This bit must be cleared by software.
CCF5 - CCF0	Module Interrupt Flag 5-0
	This is set by hardware as its corresponding module generates an interrupt. These bits must be cleared by software.

CH (0xE9) PCA Main Counter High Byte R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CH[7-0]								
WR		-							

CH holds the upper 8-bit of the main counter value.

CL (0xD9) PCA Main Counter Low Byte R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CL[7-0]								
WR	-								

CL holds the lower 8-bit of the main counter value. Reading CL triggers a snapshot action to copy CH:CL to CHSR:CLSR.

CHRLD (0xA0A7) PCA Counter CH Reload Value Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		CHRLD[7-0]							
WR	CHRLD[7-0]								

This register holds the reload value for CH in AUTO-RELOAD mode.

CLRLD (0xA0A6) PCA Counter CL Reload Value Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	CLRLD[7-0]							
WR	CLRLD[7-0]							

This register holds the reload value for CL in AUTO-RELOAD mode.

CHSR (0xF3) PCA Snapshot Register of CH RW (0x00)

	7	6	5	4	3	2	1	0		
RD		CHSR[7-0]								
WR		CHIR[7-0]								
-	CHSR[7-0] CHIR[7-0]									

CLSR (0xF2) PCA Snapshot Register of CL RO (0x00)

	7	6	5	4	3	2	1	0
RD	CLSR[7-0]							
WR	CLIR[7-0]							

CLSR[7-0] CL Snapshot Register. It is read-only.

CLIR[7-0] CL Counter Compare Interrupt The compare value is double-buffered.

The Compare/Capture modules receive the 16-bit count value from the main counter as the time base. Each module is configured by its mode register CCAPMn and contains two 8-bit registers used for comparing value holder or capturing value in storage. There are several basic modes of operation for CCP modules and each CCP module can be configured in the same or different modes.

CCAPMn CCP Module Configuration Register (0xB2, 0xB3, 0xB4, 0xB5, 0xB6, 0xB7) R/W (0x00)

		-	-	-						
	7	6	5	4	3	2	1	0		
RD	OF	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF		
WR	OF	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF		
	OF. TOG When the module is configured as Timer/Comparator modes, these two bits determine the									

DF, TOG When the module is configured as Timer/Comparator modes, these two bits determine the output flag status on pin CEX when timer is up or comparison matches. The setting only affects the CEX and does not impact the interrupt generation

OF	TOG	CEX
0	0	CEX is unchanged.
0	1	CEX toggles.
1	0	CEX change to low (or remains low).
1	1	CEX change to high (or remains high).
1	1	CEX change to high (or remains high).

When the module is configured as PWM mode, OF is ignored. Set TOG=1 to enable CEX output to high regardless of PWM value.

ECOM	Comparator Enable bit. Set to enable comparator function. Clear to disable the comparator.
CAPP	Positive Edge Capture bit. Set to use a positive edge as the capture edge. Clear to disable
	positive edge capture.

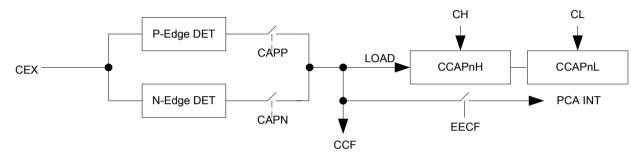
CAPN	Negative Edge Capture bit. Set to use a negative edge as the capture edge. Clear to disable
	negative edge capture

- MAT Match Control bit. When MAT = 1, a match of CH/CL with CCAPH/CCAPL causes CCF to be set and generates an interrupt. It also enables a compare edge interrupt in WPWM mode.
- PWMPulse Width Modulation bit. Set to enable PWM function. CEX is the PWM output.ECCFEnable Capture/Compare/PWM Interrupt bit. Set to enable the CCP module n (n = number
of the designated module; there are 6 modules in this case) to generate the interrupt.

CCAPnL CCP Compare Value Low Register (0xD2, 0xD4, 0xD6, 0xE2, 0xE4, 0xE6) R/W (0x00)

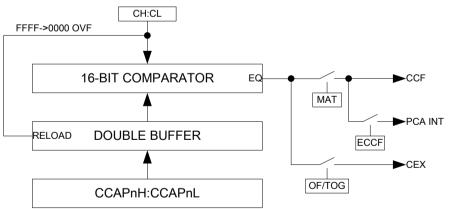
	7	6	5	4	3	2	1	0	
RD		CCAPnL[7-0]							
WR		CCAPnL[7-0]							

CCAPnL register holds the compare value or capture value. It is used as PWM value register.


CCAPnH CCP Compare Value High Register (0xD3, 0xD5, 0xD7, 0xE3, 0xE5, 0xE7) R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		CCAPnH[7-0]							
WR	CCAPnH[7-0]								

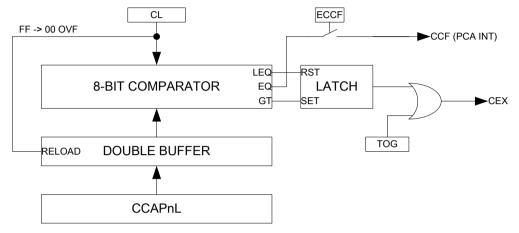
CCAPnH register holds the compare value or capture value. It is used as PWM value register.


9.1 <u>16-Bit Capture Mode</u>

The capture mode is used to measure the elapse time of an external event between the edges of the enabled external signal when either CAPP or CAPN is set. The external CEX is sampled for transition. When a valid capture edge occurs in CEX, the current CH/CL count value is loaded into CCAPnH and CCAPnL registers. At the same time CCFn in PCACON register is set, and interrupt is generated if enabled. The block diagram of the configuration is shown below:

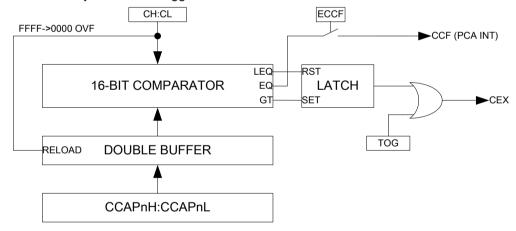
9.2 <u>16-Bit COMPARE TIMERMODE</u>

The COMPARE TIMER mode can be used as a software timer or to generate a PWM output. This mode is enabled when ECOM is set and CAPP CAPN are set to low. To allow the compare result to be used, MAT/ECCF also needs to be set. The CCAPnH and CCAPnL hold the 16-bit Timer value and are compared against the incrementing value CH and CL from the main counter. The compare value is double-buffered and is updated when the main counter overflows. This prevents any unexpected comparator output during updating a new value to CCAPnH and CCAPnL. When a match occurs, CCF is set and an interrupt is generated. The block diagram of this mode is shown as following.


The match result can also be used to generate CEX output change. Depending on the CCAPM's OF and TOG setting, CEX output is changed at the compare-match instant. However, the triggering of the change of CEX does not require MAT qualifier. Using CEX, waveform of precision duty cycle waveform or frequency modulation can be generated. The effect of OF/TOG on CEX is described in CCAPM register. To avoid unwanted glitches or a match condition when updating the CCAPnH and CCAPnL registers, when ECOM is set and the writing to CCAPnL causes ECOM to clear. Writing to CCAPnH sets ECOM to start the comparator. Therefore user program should update CCAPnL first and then CCAPnH. Of course, ECOM bit can be controlled directly through CCAPMn register.

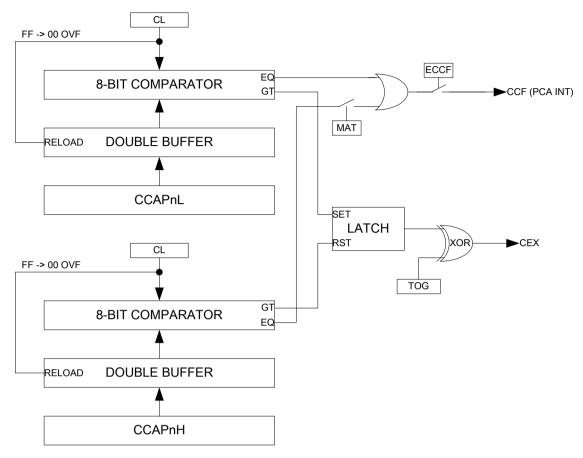
9.3 <u>8-Bit PulseWidth Modulator Mode</u>

This mode is used to generate 8-bit precision PWM output on CEX. The time base of the PWM is provided by CL of the main counter. CCAPnL is used for compare value. When $CL \leq CCAPnL$, the output is 0 and when CL >



CCAPnL, the output is 1. The compare value is double-buffered and is updated when CL overflows from FF to 00. The PWM mode is enabled when ECOM and PWM bits are both set, and CAPP, CAPN are both low. Note that under the above compare method, the maximum CEX duty cycle is 255/256. If TOG is set to 1 in this mode, CEX is forced high to provide 256/256 with full high duty cycle. If ECCF bit is set, then when CCAPnL=CL (i.e. the output change), CCF is also set to 1 by hardware and triggers a PCA interrupt. The following block diagram shows the PWM mode operation.

9.4 <u>16-Bit Pulse Width Modulator Mode</u>


This mode is similar to the 8-bit PWM mode except it uses the 16-bit CH:CL count value for the time base of the PWM. The compare value is composed of CCAPnH:CCAPnL and is double-buffered. When CH:CL \leq CCAPnHL:CCAPnL, the output is 0; when CH:CL > CCAPnHL:CCAPnL, the output is 1. The output can be forced to 1 by setting TOG=1. The PWM mode is enabled when both ECOM and PWM bits and CAPP are set while CAPN is low. An interrupt is enabled by ECCF and triggered when CH:CL==CCAPnH:CCAPL.

9.5 <u>8-BITWindowedPulse Width Modulator (WPWM) Mode</u>

This mode is used to generate 8-bit PWM output on CEX. The difference from regular PWM mode is that the CEX becomes high during a window of CL count. CEX becomes high when CL is greater than CCAPnL, CEX is reset to low when CL is greater than CCAPnH. The compare values are double-buffered. Therefore the value in CCAPnH must be larger than CCAPnL to prevent abnormal operations. The output of CEX can be inverted by setting TOG to 1.An interrupt can be enabled by ECCF, if MAT=0, then CL=CCAPnL generates an interrupt. Setting MAT to 1 and CL=CCAPnH also generates an interrupt.

9.6 <u>CCP Function Summary</u>

	CCP Func	tion	ECOM	CAPP	CAPN	PWM	OF	TOG
	NO OPERATION	I (Note 1)	0	0	0	0	Х	Х
	Triggered by p	ositive edge of CEX		0	1			
16-bit Capture	Triggered by n	Х	1	0	0	Х	Х	
Oaptaic	Triggered by]	1	1	-			
		CEX is unchanged					0	0
16-bit	CH:CL == CCAPnH:CCAPnL	CEX toggles	- 1	0	0	0	0	1
Compare (Note 2)		CEX = 0 (or stay 0)		0	0	0	1	0
(CEX = 1 (or stay 1) 1	1	1				
8-bit		en CL <= CCAPnL en CL > CCAPnL	1 0 0 1 X	Х	0			
PWM	C	EX = 1					0 0 1 1	1
16-bit		= <ccapnh:ccapnl L>CCAPnH:CCAPnL</ccapnh:ccapnl 	1	1	0	1	Х	0
PWM	(CEX=1					1 1 X X	1
8-bit	CEX = 0 wh CEX = 1 wh	1	4		1		0	
WPWM		en CL > CCAPnH en CL > CCAPnL		1	1		~	1

Note:

1. ECOM cannot be set to 1 by hardware (when writing to CCAPnH) if all bits (OF, ECOM, CAPP, CAPN, MAT,

TOG, PWM) in CCAPM are set to 0 (NO OPERATION mode).

2. In 16-bit compare mode, ECOM can be set to 1 by hardware (when writing to CCAnPH) or software, and can be cleared to 0 by hardware (when writing to CCAnPL) or software. When ECOM is cleared to 0 in this mode, the CCP function enters NO OPERATION mode. The compare value is CCAPnH:CCAPnL and is double-buffered.

10. <u>PWM0/PWM1 Controller</u>

PWM0/1 controller provides an 8-bit programmable duty cycle output. The counting clock of PWM0/1 is programmable and the base frequency of the PWM0/1 is just the counting clock divided by 256. The duty cycle setting is always double buffered. PWM0 output is connected through P65, P61 or P46.PWM1 output is connected through P64, P62, P47 or P21.

PWM0CFG (0xA088) PWM0 Clock Scaling Setting Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		CS[7-5]		CS[4-0]							
WR		CS[7-5]				CS[4-0]					
	CS[7-5]	Clock Pre	-Divider Settir	ng							
		CS[7-5] =	000	Disable PWM0) and Output =	= 0					
		CS[7-5] =	001 /	4							
				/8							
		CS[7-5] =	011 /	/16							
		CS[7-5] =	100 /	'32							
		CS[7-5] =	101 /	64							
		CS[7-5] =	110 /	128							
		CS[7-5] =	111 [Disable PWM0) and Output =	= 1					
	CS[4-0]	Clock Divi	der Setting. I	Range from 0	to 31.						
The seu	unting alask is					GMU- and wa		Mhaaa			

The counting clock is SYSCLK/CS[7-5]/(CS[4-0]+1). Assuming SYSCLK is 16MHz, and we want the PWM base frequency of 120Hz. First we get 16MHz/120Hz/256 = 520.8. 520.8 needs to be separated as two multiplicands of CS[7-5] and CS[4-0]. Then by trial and error we can select CS[7-5] = 100, and CS[4-0] = 15. This gives 16MHz/256/32/16 = 122Hz.

PWM0DTY (0xA089) PWM0 Duty Register R/W (0x00)

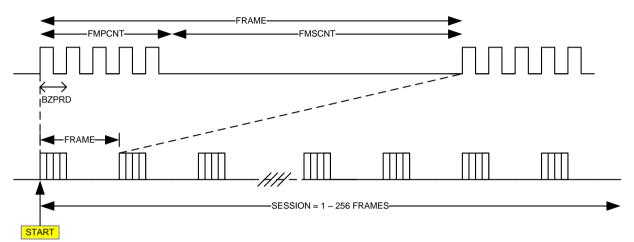
	7	6	5	4	3	2	1	0		
RD	PWM0DTY[7-0]									
WR		PWM0DTY[7-0]								

PWM0DTY registers define the PWM0 duty cycle. The maximum duty cycle is 255/256. PWM0DTY is always double buffered and is loaded to duty cycle comparator when the current counting cycle is completed.

PWM1CFG (0xA08A) PWM1 Clock Scaling Setting Register R/W (0x00)

RD WR								0			
WR		CS[7-5]	CS[7-5]			CS[4-0]					
	CS[7-5]					CS[4-0]					
CS[7-5] = 001 // CS[7-5] = 010 // CS[7-5] = 011 // CS[7-5] = 100 // CS[7-5] = 101 //				Disable PWM1 4 8 16 32 64 128	I and Output =						
	5[4-0]		•	Range from 0	to 31						
PWM1DTY	′ (0xA08B)	PWM1 Duty I	Register R/W	(0x00)							
	7	6	5	4	3	2	1	0			
RD	PWM1DTY[7-0]										
WR	PWM1DTY[7-0]										

PWM1DTY registers define the PWM1 duty cycle. The maximum duty cycle is 255/256. PWM1DTY is always double buffered and is loaded to duty cycle comparator when the current counting cycle is completed.


PWMFG (0xA08C) PWM0/1Interrupt Enable and Flag Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	PWM0FG	PWM1FG	-	-	PWM0INTE	PWM1INTE	-	-
WR	PWM0FG	PWM1FG	-	-	PWM0INTE	PWM1INTE	-	-
	PWM0FG PWM1FG	PWM0FG PWM0DT PWM1 Inte	Y. errupt Flag is set by harc		DINTE=1 and a			

11. Buzzer controller

This buzzer controller is a simple sound generator. The waveform generated is shown in the following. BZPRD is determined from the buzzer frequency BZFRQ. The basic element of the waveform is a FRAME where each FRAME is a combination of a number of pulses defined by FMPCNT and a number of pulse duration of silence defined by FMSCNT. This combination allows simple two-tone generations, one defined by BZFRQ, and one subharmonic defined by BZFRQ/(FMPCNT+FMSCNT). The SESSION defines the number of FRAMES, which essentially determines the duration of the sound. The output can be configured as software start, which triggers a session output when START is set, or as continuous if CONT is set. In either configuration, session end interrupt can be enabled to inform software for intervention.

BZFRQ (0xA128) Buzzer frequency controlled R/W (0x10)

	7	6	5	4	3	2	1	0	
RD	BZFRQ[7:0]								
WR		BZFRQ[7:0]							

BZFRQ[7-0] Buzzer Frequency Setting

The buzzer frequency is defined by BZCLK/(BZFRQ[8-0]+1)/2, BZFRQ[8] is located at BZCFG[4].

BZFMCFG (0xA129) Buzzer Frame Configuration Register R/W (0xF0)

	7	6	5	4	3	2	1	0		
RD		FMPCI	NT[3-0]		FMSCNT[3-0]					
WR		FMPCI	NT[3-0]			FMSC	NT[3-0]			
	FMPCNT[3-0]		unt for Frame							

This number of pulse during Frame on duration is FMPCNT[3-0]

FMSCNT[3-0] Pulse Count for Frame Silence

This number of pulse during Frame silence duration is FMPCNT[3-0]

FMPCNT[3-0] + FMSCNT[3-0] should be greater than 1 for normal operations.

BZSNFMCT (0xA12A) Buzzer Session Frame Count Register R/W (0x80)

	7	6	5	4	3	2	1	0	
RD	BZSNFMCT[7-0]								
WR		BZSNFMCT[7-0]							

BZSNFMCT[7-0] Frame Repeat Number of a Session

BZSNFMCT[7-0] defines the number of frame in a session.

BZCFG (0xA12B) Buzzer Configure Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	BZEN	SNENDE	BZCSEL	BZFRQ[8]	BZPOL	CONT	SSINTF	BUZY		
WR	BZEN	STENDE	BZCSEL	BZFRQ[8]	BZPOL	CONT	SSINTF	SSTART		
	BZEN	Buzzer Co	ontrol Enable							
			BZEN=1 enables the buzzer controller							
	BZEN=0 disables the buzzer controller SSENDE Session End Interrupt Enable STENDE=1 enables the session end interrupt. The interrupt is triggered for both continu									
			=1 enables the		interrupt. The	e interrupt is tr	iggered for bo	th continuous		
				s. e session end	interrupt					
	BZCSEL		ock Select		interrapti					
		0 = RTC								
		1 = SIOSC	2							
	BZPOL	BZOUT P	olarity Setting							
			, BZOUT is in							
			, normal pola	rity						
	CONT	Continuou								
				•	ontinuously a	-				
	SSTRAT		alsables the b		ous mode and	output one se	ession by issu	ing a START.		
	SSIRAI			u sion output on	the huzzer					
				•	ion is complete	ed				
	SSINTF		and Interrupt F							
		SNINTF is	s set by hardw	vare at the end	d of session if	SSENDE=1.	This also trigg	ers an		
		interrupt.	SSINTF must	t be cleared by						
	BUSY	Busy Stat								
		BUSY is s idle.	et to 1 by har	dware when tl	ne output is ac	tive. BUSY=	0 indicates the	e output is		
		10101								

BZSNMUTE (0xA12C) Buzzer Session MUTE Frame Register R/W (0xff)

	7	6	5	4	3	2	1	0			
RD	BZSNMUTE[7-0]										
WR		BZSNMUTE [7-0]									

BZSNMUTE [7-0] start mute Frame number of a Session

Mute buzzer when frame count greater than BZSNMUTE in a session.

12. LCD/LED controller

The LCD/LED Controller supports up to maximum 240 dots with 8 COM and 30 SEG. Driving duty cycle methods include static, ½, 1/3, ¼, 1/5, 1/6, 1/7, 1/8, and programmable ½, ⅓ and ¼ bias with 12-level brightness control. The clock sources of LCD/LED controller can be selected either from RTC or from SIOSC, and support display frame rate down to 1Hz. When configured in LED mode, it supports either direct-driving or external-driving modes. In LCD mode, the LCD controller can be left running during STOP or SLEEP mode. The current consumption of LCD controller is about 10uA.

LCDCSL (A120h) LCD Controller Pixel Clock Divider Low Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	CSL[7-0]								
WR		CSL[7-0]							

LCDCSH (A121h) LCD Controller Pixel Clock Divider High Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	LCDCSEL	MODE[1:0]		LCDBRT[2]	CSL[11-8]				
WR	LCDCSEL	MOI	MODE[1:0]		CSL[11-8]				
CLKSEL LCD Controller Clock Se			alaction						

CLKSEL	LCD Controller Clock Selection
	CLKSEL=0 uses RTC as LCD controller clock LCDCLK.
	CLKSEL=1 uses SIOSC as LCD controller clock LCDCLK.
	In LED modes, the clock is forced to use SYSCLK
MODE[1-0]	LCD/LED Mode Setting
	00 – Disabled
	01 – LCD Mode
	10 – LED External Drive Mode
	11 – LED Direct Drive Digit Mode
LCDBRT[2]	LCD Bias Mode Setting
LCDCS[11-0]	LCDCS[11-0] defines the pixel rate of the LCD/LED
	In LCD mode, (RTC or SIOSC)/(CSL[11-0]+1)
	In LED modes, SYSCLK/256/(CSL[11-0]+1)

LCDCFGA (A122h) LCD configure register AR/W (0x00)

	7	6	5	4	3	2	1	0				
RD	ENCOM7	ENCOM6	ENCOM5	ENCOM4	DISPOFF	-	INTEN	INTF				
WR	ENCOM7	ENCOM6	ENCOM5	ENCOM4	DISPOFF	-	INTEN	INTF				
	ENCOM7	ENCOM7	Enable COM7 Output ENCOM7=0, enables SEG28 as output ENCOM7=1, enables COM7 as output									
	ENCOM6 Enable COM6 Output ENCOM6=0, enables SEG29 as output ENCOM6=1, enables COM6 as output											
	ENCOM5	Enable COM5 Output Enable COM5 Output ENCOM5=0, enables SEG30 as output ENCOM5=1, enables COM5 as output										
	ENCOM4											
	DISPOFF	LCD/LED Display Control DISPOFF = 0 for normal display DISPOFF =1 turn off all segments and common outputs to disable display. The internal logic is still in operation.										
	INTEN	Interrupt Enable for Display Frame										

INTF

Interrupt Flag for Display Frame

This bit is set by hardware at display frame.

This bit must be cleared by software. Write 0 to clear INTF at next display clock rising edge ** A Display Frame is defined as a completion of a scan cycle. In other words, in LCD or LED external drive mode, it it's the clock/duty. In LED direct drive mode, it is clock * (# of active digits).

LCDCFGB (A123h) LCD configure register BR/W (0x00)

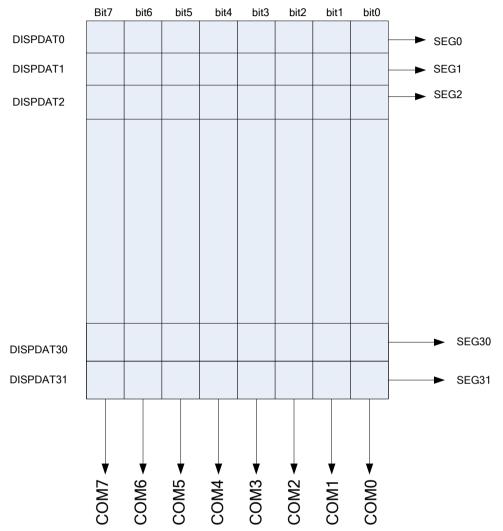
	7	6	5	4	3	2	1	0		
RD	BIAS	S[1-0]	LCDBRT[1-0]		LEDDIG[3-0]/LCDDUTY[3-0]					
WR	BIAS	6[1-0]	0] LCDBRT[1-0]			LEDDIG[3-0]/LCDDUTY[3-0]				
	BIAS[1-0]	LCD Bias	Mode Setting							
		00 = Rese	erved							
		01 = ½ Bia	as							
	10 = 1/3 Bias									
	11 = ¼ Bias									
	LCDBRT[2-0] LCD Bias Mode Setting									
		In LCD mode, there are 8 brightness levels. Only LCDBRT[2] is located at LCDCSH[4].								
	LCDDUTY[3-0] LCD Display Duty Cycle Setting									
				and for LED e	external drive r	node				
		0000 = St								
		0001 = ½	•							
		0010 = 1/3	•							
		0011 = 1/4	•							
		0100 = 1/5	•							
		0101 = 1/6	•							
		0110 = 1/7	•							
		0111 = 1/8	•							
	LEDDIG[3-0]		e Digit Count							
	LEDDIG[3-0] + 1 defines the number of active digits. Please note the active digit must sta from SEG0 and continuously on.									

LCDCFGC (A124h) LED configure register CR/W (0x00)

	7	6	5	4	3	2	1	0			
RD	SEGPOL	COMPOL		LEDBRT[5-0]/LCDRAC[3-0]							
WR	SEGPOL	COMPOL		LEDBRT[5-0]/LCDRAC[3-0]							
	SEGPOL Segment Output Polarity in LED external drive mode SEGPOL= 0, high active SEGPOL= 1, low active COMPOL Common Output Polarity in LED external drive mode COMPOL= 0, high active COMPOL= 0, high active LEDBRT[5-0] LED Brightness Control										
	LEDBRT[5-0]	0			s levels. LEDB	RT[5-0] from	000000 to111	111.			
In LED mode, there are 64 brightness levels. LEDBRT[5-0] from 000000 to111111. LCDRAC[3-0] Reference Acceleration Control 0000 = Disable Reference Acceleration LCDRAC[3-0]+1 defines the number LCDCLK cycles for acceleration. Please note the higher LCDRAC will result higher power consumption.											
	The display da	ata are stored	in DISPDAT[31-0] registers	. In LCD and	LED external of	drive mode, th	e data are			

scanned out through SEG output pins. In LED direct drive mode, the data are scanned out through COM output pins.

DISPDAT[31-0] (A100h - A11Fh) Display Data Register 0 – 31 R/W (0x00)


	-							
-	0	-		0			0	
(6	5	4	3	2	1	0	
	-	-		-				

RD	DISPDAT[I][7-0]
WR	DISPDAT[I][7-0]

12.1 LCD Drive Mode

12.1.1 DSIPDAT /SEG Mapping

DISPDAT00~31 provide SEG00~31 output contents, output sequence follows COMx timing,

The COMx output sequence: $COM0(T0) \rightarrow COM1(T1) \rightarrow COM2(T2) \rightarrow COM3(T3) \dots \rightarrow COMN(TN) \rightarrow COM0(T0)$ The N value defined by Duty setting, N=0 for static, N=1 for 1/2duty, N=2 for 1/3duty, N=3 for 1/4 duty. And Max N=7 for 1/8 duty.

Example DISPDAT0=8'b0100_1010, DISPLAY1=8'b0011_0001, 1/4duty

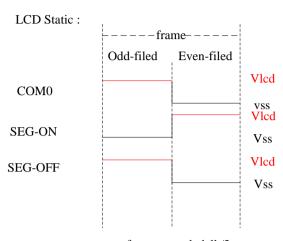
COM0 timing, SEG0 output related to DISPDAT0-bit0 ("0", output off-level waveform)

SEG1 output related to DISPDAT1-bit0 ("1", output on-level waveform)

COM1 timing, SEG0 output related to DISPDAT0-bit1 ("1", output on-level waveform)

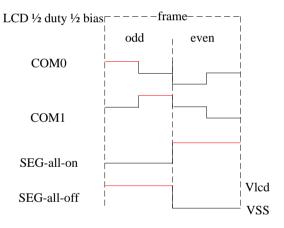
SEG1 output related to DISPDAT1-bit1 ("0", output off-level waveform)

COM2 timing, SEG0 output related to DISPDAT0-bit2 ("0", output off-level waveform)


SEG1 output related to DISPDAT1-bit2 ("0", output off-level waveform)

COM3 timing, SEG0 output related to DISPDAT0-bit3 ("1", output on-level waveform)

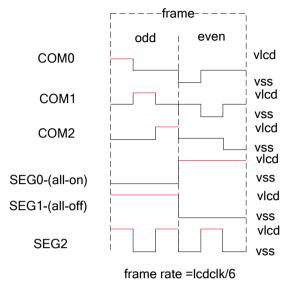
SEG1 output related to DISPDAT1-bit3 ("0", output off-level waveform) Repeat to COM0 timing, ..., COM4~COM7 not used. COMx output waveforms refer to duty and bias definition.


12.1.2 Static mode

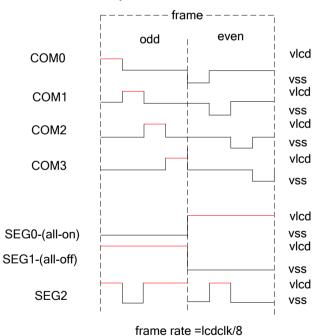
frame rate =30Hz sysclk = 16Mhz, T2M=0 , div-12 timer2-value = 16*2^20 /12/30/2 = 23302 {TP2H,TP2L}=2^16-23302 = 16'hA4FA

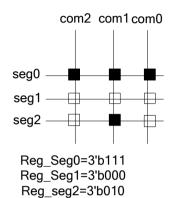
frame rate =lcdclk/2

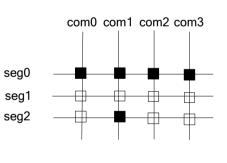
12.1.3 1/2 Duty 1/2 Bias


frame rate =lcdclk/4

CS5523 PRELIMINARY

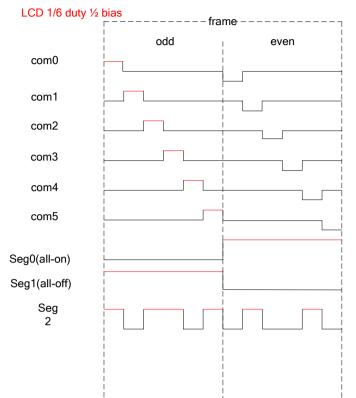

12.1.4 1/3 Duty 1/2 Bias

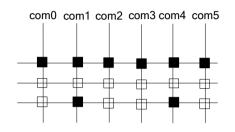

LCD 1/3 duty 1/2 bias



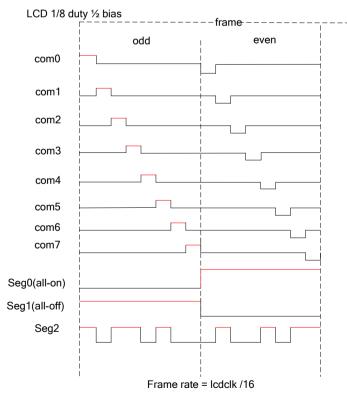
12.1.5 1/4 Duty 1/2 Bias

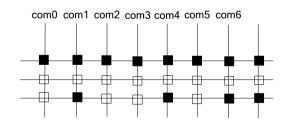
LCD 1/4 duty 1/2 bias





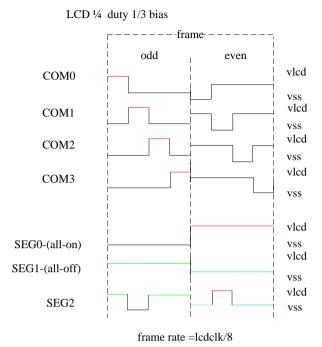
DISPDAT0=4'b1111 DISPDAT1=4'b0000 DISPDAT2=4'b0010

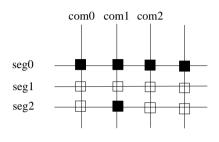

12.1.6 1/6 Duty 1/2 Bias



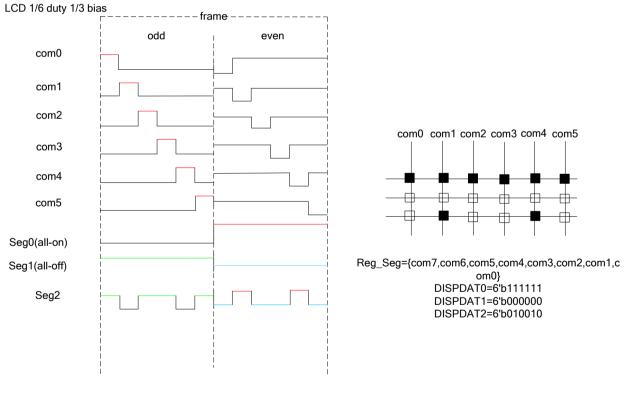
Reg_Seg={com7,com6,com5,com4,com3,com2,com1,c om0} DISPDAT0=6'b111111 DISPDAT1=6'b000000 DISPDAT2=6'b010010

12.1.7 1/8 Duty 1/2 Bias



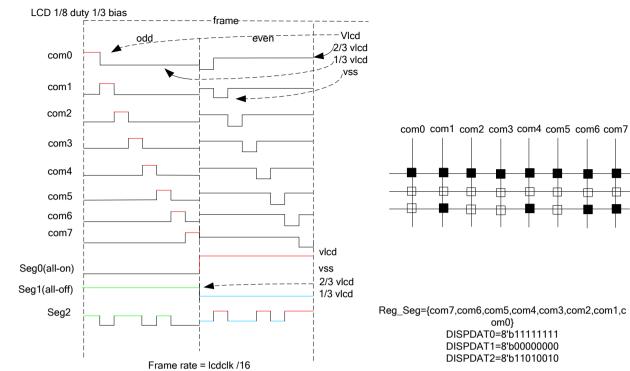


Reg_Seg={com7,com6,com5,com4,com3,com2,com1,c om0} DISPDAT0=8'b11111111 DISPDAT1=8'b0000000 DISPDAT2=8'b11010010

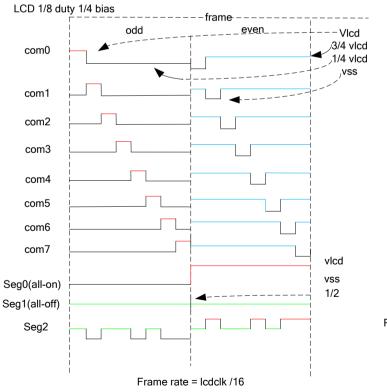

12.1.8 1/4 Duty 1/3 Bias

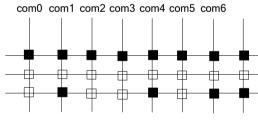
DISPDAT0=4'b1111 DISPDAT1=4'b0000 DISPDAT2=4'b0010

12.1.9 1/6 Duty 1/3 Bias

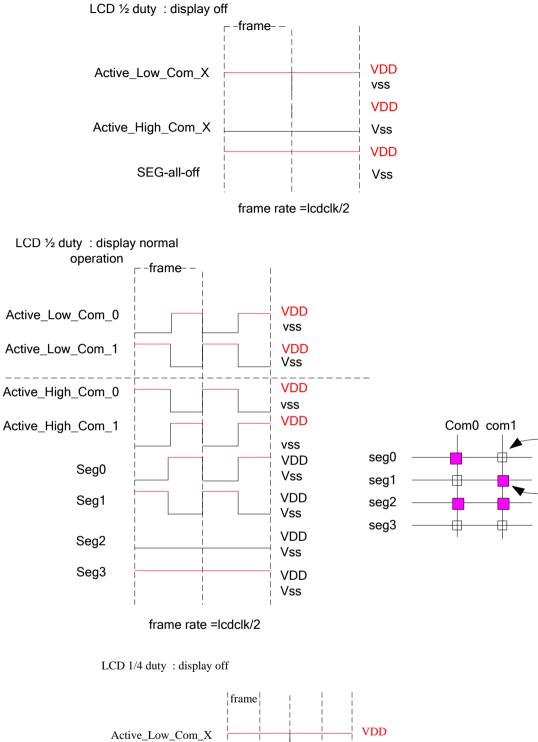


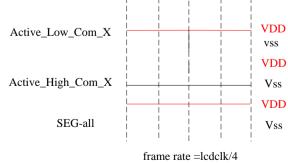
Frame rate = lcdclk /12


Revision V0.94, 2018/05/11

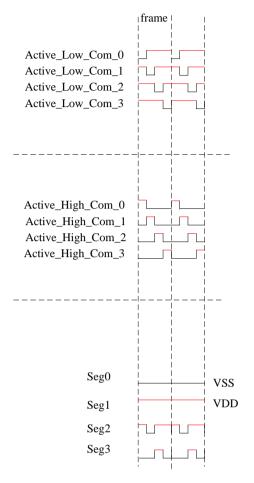


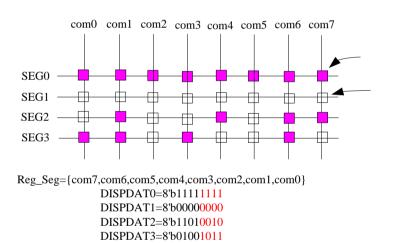
12.1.10 1/8 Duty 1/3 Bias


12.1.11 1/8 Duty 1/4 Bias

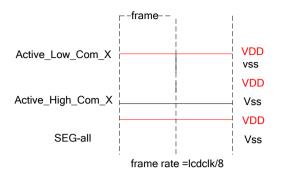


Reg_Seg={com7,com6,com5,com4,com3,com2,com1,c om0} DISPDAT0=8'b11111111 DISPDAT1=8'b0000000 DISPDAT2=8'b11010010

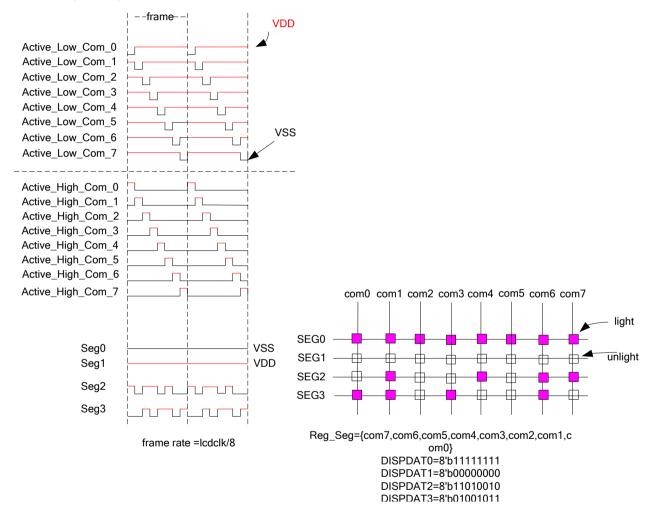




LCD 1/4 duty : display normal operation

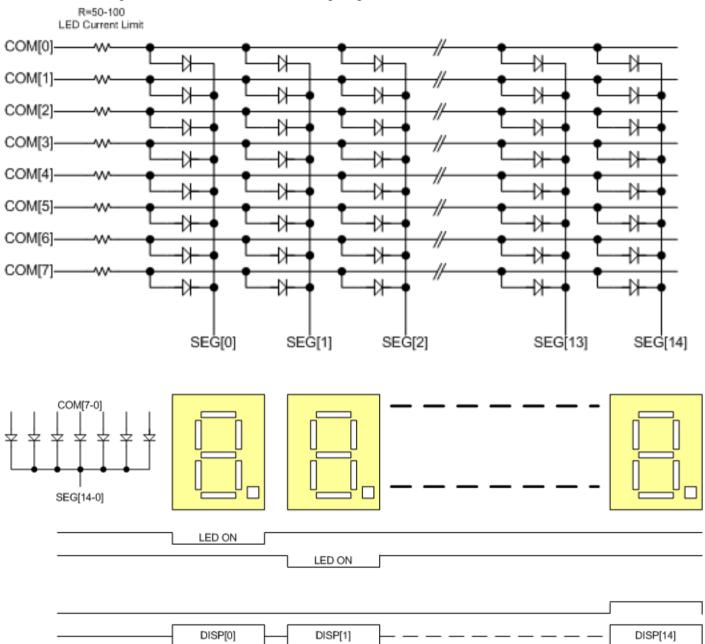


frame rate =lcdclk/4



LCD 1/8 duty : display off

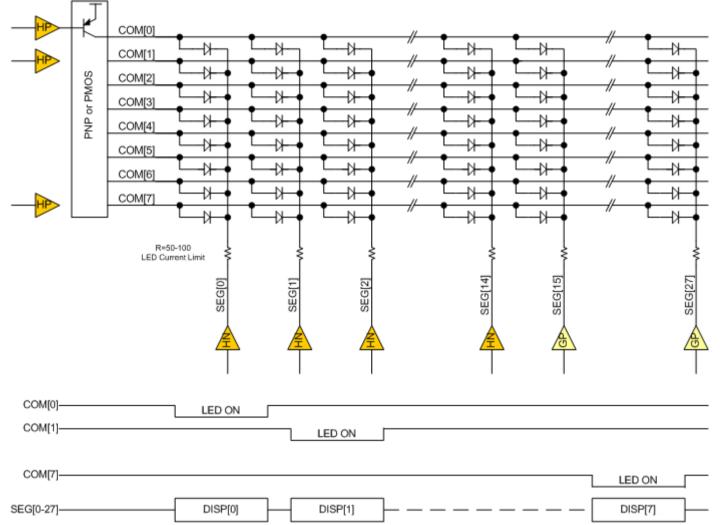
LCD 1/8 duty : display normal operation


12.2 LED Drive Mode

12.2.1 Direct Drive Mode

CS5523 support LED direct drive with common-cathode LED driving without external transistors. This mode is enabled by setting MODE[1-0]=11 in LCDCSH register. The LED is configured as 8-segment digit display and up to 15 digits. The display data are stored in DISPDAT[15-0]. These are scanned out on COM[7-0] and SEG[0-14] are enabled scanned sequentially. The resulting duty cycle of the LED is thus 1/SEG[0-14] depending on the number of SEG enabled.

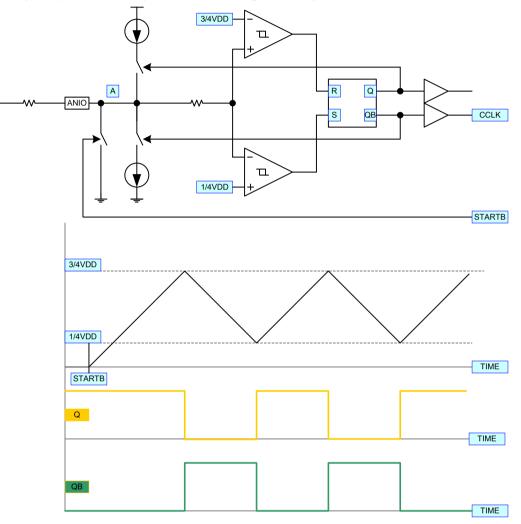
The COM outputs are used to drive the segments and the SEG outputs are used to drive the digits. COM outputs have high PMOS drive (up to 25mA source current with RDSON of 200hm for 85C, and up to 20mA for 110C) and SEG outputs have high NMOS drive (up to 125mA sink current with RDSON of 8 0hm for 85C, and up to 125mA for 110C), thus is suited to drive common-cathode LED arrays. A typical application circuit showing the LED array and associated scanning waveform is shown in the following diagram.


Since each SEG output needs to sink up to 8 LED if all COM output is enabled, the total sink current must be less than 8 x of COM source current. For sink current up to 125mA, the LED current thus should be limited to 125mA/8 = 16mA. Then the average LED current can be derived as $16mA \times Duty$ Cycle. For example, total 10 digits are enabled then the average LED current is 1.6mA.

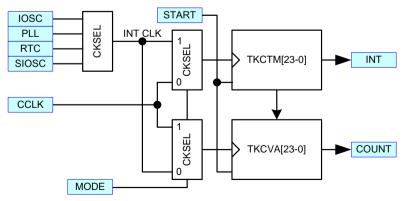
12.2.2 External Drive Mode

For higher LED brightness requirement, CS5523 also supports external drive mode to increase the average LED current. In this mode, COM[0-7] is scanned and enabled sequentially while SEG output are output accordingly. As the result, the on duty cycle of LED is 1/COM[0-7] depending on the number of enabled COM outputs. This is set by LCDDTY[2-0] and ranges from 0 (static) to 1/8th. This mode can support up to 4 x 32 or 8 x 28 LED matrix array.

This mode is enabled by setting MODE[1-0]=10 in LCDCSH register. The application circuits and corresponding scan timing of external drive mode is shown in the following diagram.

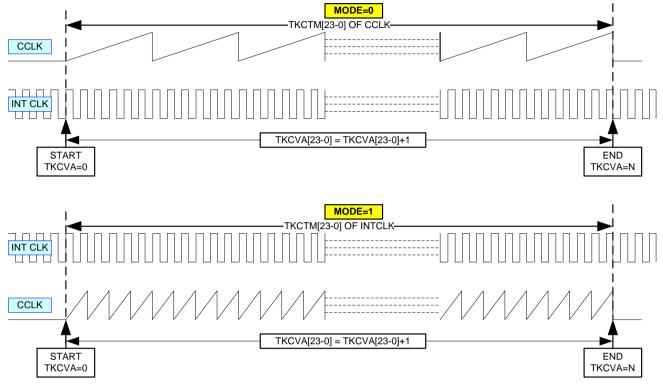

In the example, COM output is connected to external PNP or PMOS transistor to supply LED current. In this case, COM output polarity must be set in order to obtain correct driving signals. When PNP is used, maximum LED brightness should be set to 63/64 in order to avoid ghosting due to PNP extended turn-off delay. Alternatively, NPN transistors can also be used. NPN transistor can also serve as high voltage blocking function for LED array.

External drive mode can provide significant higher LED average current for several reasons. First, source current limitation is removed. Secondly, scanning COM makes the effective duty on cycle higher (static to $1/8^{th}$). The sink current is determined by the maximum drive capability of SEG driver (up to 125mA for SEG[14-0] output driver), and GPIO driver (up to 50mA for SEG[15-31]) if total segment count is more than 15. And the maximum current for PNP/PMOS drive is the number of the segments times the LED on current. Using an 8 by 27 array as an example, the maximum LED on current is then 50mA. And the PNP/PMOS maximum current is 50mA * 27 = 1.35A. And because the duty cycle $1/8^{th}$, the effective LED average current is 50mA/8 = 6.25mA. For another 8 x 14 array example, the LED on current is then 125mA, and the PNP/PMOS current is 125mA * 14 = 1.68A. And the effective LED average current is 125mA * 14 = 1.68A. And the effective LED average current is 125mA * 14 = 1.68A.

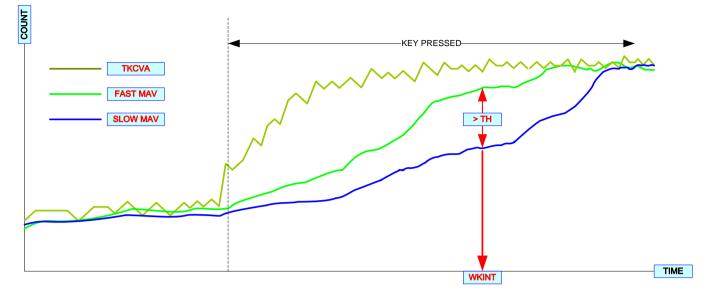


13. <u>Touch Key Controller I</u>

The Touch Key Controller utilizes capacitance based touch key sensing. The touch capacitance detection is based on a CMOS relaxation oscillator as shown, which uses the key capacitance as the oscillation parameters. When a key is touched, the capacitance of the key goes up which in terms results lower oscillation frequency. The Touch Key Controller in operation typically consume at 25uA (when slow comparator is selected) and at 250uA (when fast comparator is selected). The touch key controller running at SIOSC can still be enabled during MCU sleep mode. This can provides very low-power wake-up mechanism using touch key interface.



The touch detection algorithm is done in software and is assisted with the following hardware. The hardware consists of one 24-bit Timer and a 24-bit Counter. The clock into the timer and the counter can be interchanged by MODE selection.


When MODE=0 (MODE0), the counter uses internal clock and timer uses sensing clock. This typically is used when the capacitance oscillation is slower. When MODE=1 (MODE1), the clock relationship is reversed and this is typically used when sensing oscillation is faster. Typical waveforms are shown in the following timing diagram.

The START command clears the counter and load the timer, and then starts the timer and the counter. When the timer (TKCTM) expires, the counter value (TKCVA) is captured and an interrupt is triggered. Two hardware moving average filters, one with slow time constant (TKCMVS) and one with fast time constant (TKCMVF), are also included in the Touch Key Controller. The software should write the previous moving average into TKCMVF and TKCMVS before issuing START. When a capture is completed, the moving average filters are also updated. The software can read out TKCVA as well as TKCMVF and TKCMVS for algorithm use.

The Touch Key Controller also allows auto detection. The auto detection is primarily used fore wake up purpose. The TKCTM and TKCVA functions the same as the normal mode, and the capture cycles continues without interrupt. However, in AUTO mode, TKCTM and TKCVA, as well as TKCMVF and TKCMVS are limited in 16-bit width. The hardware monitors the TKCMVF and TKCMVS, and when the fast moving-average is greater than the slow moving-average by a predefined threshold, a wake-up interrupt is triggered. The following diagram illustrates the progressive count curves.

TKCCFG (0xA130h) Touch Key Controller Configuration Register R/W (0x00)

7	6	5	4	3	2	1	0				
TKCEN	MODE	ICKSEL[1-0]		AUTO	TKINTEN	TKINTF	BUSY				
TKCEN	MODE	ICKSE	EL[1-0]	AUTO	TKINTEN	TKINTF	START				
TKCEN MODE	Timer/Co MODE=0	Touch Key Controller Enable Timer/Counter Mode MODE=0 selects Capacitor Clock as timer and internal clock as counter MODE=1 selects internal clock as timer and capacitor clock as counter									
ICKSEL[1-0]	00 = IOSC 01 = PLL 10 = RTC										
AUTO											
BUSY	Touch Ke	ey Timer Activ	e								
BUSY is set by hardware when the capture is in progress. START Start Capacitance Sense Capture Command Write START=1 to start the capture If AUTO=0, one capture is done. If AUTO=1, continuous capture is initiated until the detection is made Write START=0 to abort on-going capture											
	TKCEN TKCEN MODE ICKSEL[1-0] AUTO TKINTEN TKINTF BUSY	TKCENMODETKCENMODETKCENTouch KeMODETimer/CoMODE=0MODE=0MODE=1Internal CICKSEL[1-0]Internal C00 = IOS01 = PLL10 = RTC11 = SIOAUTOAuto DetTKINTENTouch KeTKINTFTouch KeBUSYSTARTSTARTStart CapWrite STIf AUTO=If AUTOKe ST	TKCENMODEICKSETKCENMODEICKSETKCENTouch Key Controller EMODETimer/Counter ModeMODETimer/Counter ModeMODE=0 selects CapaMODE=1 selects interrICKSEL[1-0]Internal Clock Select.00 = IOSC01 = PLL10 = RTC11 = SIOSCAUTOAuto Detection and WaTKINTENTouch Key Interrupt ErTKINTFTouch Key Interrupt FlaBUSYStart Capacitance SenWrite START=1 to starIf AUTO=0, one capturIf AUTO=1, continuousWrite START=0 to abo	TKCENMODEICKSEL[1-0]TKCENMODEICKSEL[1-0]TKCENTouch Key Controller EnableMODETimer/Counter ModeMODETimer/Counter ModeMODE=0 selects Capacitor Clock asMODE=1 selects internal clock as timICKSEL[1-0]Internal Clock Select. This also defir00 = IOSC01 = PLL10 = RTC11 = SIOSCAUTOAuto Detection and Wake UpTKINTENTouch Key Interrupt EnableTKINTFBUSYSTARTStart Capacitance Sense Capture CoWrite START=1 to start the captureIf AUTO=1, continuous capture is initWrite START=0 to abort on-going ca	TKCENMODEICKSEL[1-0]AUTOTKCENMODEICKSEL[1-0]AUTOTKCENTouch Key Controller EnableMODEMODETimer/Counter ModeMODE=0 selects Capacitor Clock as timer and inter MODE=1 selects internal clock as timer and capaceICKSEL[1-0]Internal Clock Select. This also defines the main of 00 = IOSC00 = IOSC01 = PLL 10 = RTC11 = SIOSC11 = SIOSCAUTOAuto Detection and Wake Up TKINTENTouch Key Interrupt EnableTKINTFTouch Key Interrupt FlagBUSYTouch Key Timer Active BUSY is set by hardware when the capture is in prSTARTStart Capacitance Sense Capture Command Write START=1 to start the capture If AUTO=0, one capture is done. If AUTO=1, continuous capture is initiated until the Write START=0 to abort on-going capture	TKCENMODEICKSEL[1-0]AUTOTKINTENTKCENMODEICKSEL[1-0]AUTOTKINTENTKCENTouch Key Controller EnableMODETimer/Counter ModeMODE=0 selects Capacitor Clock as timer and internal clock as of MODE=1 selects internal clock as timer and capacitor clock as conditionedICKSEL[1-0]Internal Clock Select. This also defines the main clock of the TK 00 = IOSC01 = PLL 10 = RTC11 = SIOSCAUTOAuto Detection and Wake UpTKINTENTouch Key Interrupt EnableTKINTFTouch Key Interrupt FlagBUSYTouch Key Timer Active BUSY is set by hardware when the capture is in progress.STARTStart Capacitance Sense Capture Command Write START=1 to start the capture If AUTO=0, one capture is done. If AUTO=1, continuous capture is initiated until the detection is m	TKCENMODEICKSEL[1-0]AUTOTKINTENTKINTFTKCENMODEICKSEL[1-0]AUTOTKINTENTKINTFTKCENTouch Key Controller EnableMODETimer/Counter ModeMODETimer/Counter ModeMODE=0 selects Capacitor Clock as timer and internal clock as counterMODEInternal Clock Select. This also defines the main clock of the TKC00 = IOSC01 = PLL10 = RTC11 = SIOSCAUTOAuto Detection and Wake UpTKINTFTouch Key Interrupt EnableTKINTFTouch Key Interrupt FlagBUSYTouch Key Timer ActiveBUSYStart Capacitance Sense Capture CommandWrite START=1 to start the captureIf AUTO=0, one capture is initiated until the detection is madeWrite START=0 to abort on-going capture				

TKCAFG (0xA131h) Touch Key Controller Analog Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	HSPEED	PSREN	PSMODE	IMULT	ISEL[3-0]					
WR	HSPEED	PSREN	PSMODE	IMULT	ISEL[3-0]					
	HSPEED PSREN	HSPEED HSPEED Pseudo-l)=1 set compa Random Sequ	rator at high s	peed and also		scale equals to scale equals t			

	PSREN=1 uses a pseudo-random bit stream of 255 bit length to control the charge/discharge currents for each cycle. This random effect helps to counteract the impact of EMI.
PSMODE	Pseudo-Random Mode
	PSMODE=0 uses 3 bits of the random bit stream and generate the current. 3-bit corresponding to 1/3/5/7 are used, otherwise ISEL[3-0] is used.
	PSMODE=1 uses 4 bits of the random bit stream and generate the current. 4-bit corresponding to 1/3/5/7/9/11/13/15 are used, otherwise ISEL[3-0] is used.
IMULT	Current Scale Setting
	IMULT=0 uses normal scale. 0.125uA – 2.0uA (HSPEED=0), and 0.25uA – 4.0uA (HSPEED=1).
	MULT=1 makes the current 16X. 0.625uA – 10uA (HSPEED=0) and 1.25uA – 20uA
	(HSPEED=1)
ISEL[3-0]	Current Setting
	The pull-up and pull-down current is set as (ISEL[3-0]) in unit step of 0.125uA. The range is from 0.125uA to 2uA.

TKCFFG (0xA132h) Touch Key Controller Filter Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		SCF	G[3:0]		FCFG[3:0]				
WR		SCF	G[3:0]		FCFG[3:0]				

SCFG[3-0]	Slow Moving Ave	rage Configuration
	SCFG[3:0]	TKCMVS
	0	TKCVAL
	1	(TKCVAL+ 15 * TKCMVS)/16
	2	(TKCVAL+ 31 * TKCMVS)/32
	3	(TKCVAL+ 63 * TKCMVS)/ 64
	4	(TKCVAL+ 127 * TKCMVS)/ 128
	5-15	Reserved
FCFG[3-0]	Fast Moving Aver	age Configuration
	FCFG[3:0]	TKCMVF
	0	TKCVAL
	1	(TKCMVF *1 + TKCVAL*1)/2
	2	(TKCMVF *3 + TKCVAL*1)/4
	3	(TKCMVF *7+ TKCVAL*1)/8
	4	(TKCMVF *15+ TKCVAL*1)/16
	5-15	Reserved

TKCATH0 (0xA133h) Touch Key Auto Detect Threshold 0R/W (0x00)

	7 6 5 4 3 2 1 0							0	
RD	TKCATH[7-0]								
WR	TKCATH[7-0]								

TKCATH1 (0xA134h) Touch Key Auto Detect Threshold 1 R/W (0x00)

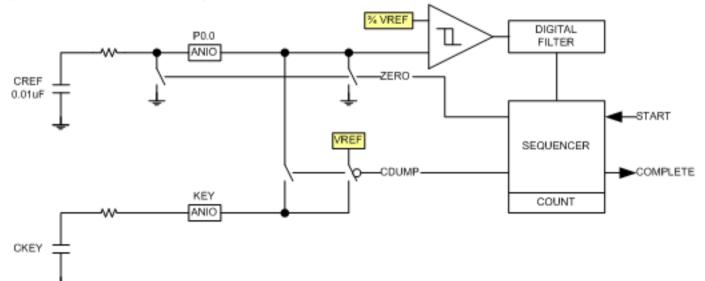
	7 6 5 4 3 2 1 0										
RD	TKCATH[15-8]										
WR	TKCATH[15-8]										
тксат	TKCATH2 (0xA135h) Touch Key Auto Detect Threshold 2 R/W (0x00)										

TKCATH2 (0xA135h) Touch Key Auto Detect Threshold 2 R/W (0x00)

		7	6	5	4	3	2	1	0
--	--	---	---	---	---	---	---	---	---

RD	ABSTH	TKCDI	_Y[1-0]			TKCATH[21-1	6]			
WR	ABSTH	TKCDI	_Y[1-0]			TKCATH[21-1	6]			
тксти		the moving average to prevent false trigger. 00 = 64 Capture 01 = 256 Capture 10 = 512 Capture 11 = 1024 Capture h) Touch Key Timer Register 0 R/W (0x00)								
	7	6	5	4	3	2	1	0		
RD				ТКСТМ	/IR[7-0]			1		
WR					/R[7-0]					
тксти	MR1 (0xA141h) Touch Key	Timer Regist	ter 1 R/W (0x0	0)					
	7	6	5	4	3	2	1	0		
RD			I	ТКСТМ	R[15-8]	1				
WR				TKCTM	R[15-8]					
тксти	MR2 (0xA142h) Touch Key	Timer Regist	ter 2 R/W (0x0	0)					
	7	6	5	4	3	2	1	0		
RD				TKCTM						
WR				TKCTM	R[23-16]					
TKCVA	AL0 (0xA144h) Touch Key	Value Regist	er 0 RO (0x00)	1				
	7	6	5	4	3	2	1	0		
RD				TKCV	AL[7-0]					
WR				-	•					
TKCVA	-		_	er 1 RO (0x00	-	_				
	7	6	5	4 TKC)/A	3	2	1	0		
RD WR				TKCVA	L[12-8]					
				··· 0 DC /0						
				er 2 RO (0x00) 3	2	4	0		
RD	7	6	5	4 TKCVAI		2	1	0		
WR				INC VAI	-[∠J-10]					
	VF0 (0x∆148h) Touch Key	Fast Moving	Average Reg	ister () RO ()	x00)				
	7	6	5	Average Reg	3	2	1	0		
RD		-	-	TKCM		<u> </u>	<u> </u>			
WR										
	1									

TKCMVF1 (0xA149h) Touch Key Fast Moving Average Register 1 RO (0x00)


	7	6	5	4	3	2	1	0
RD				TKCM	/F[15-8]			
WR					-			
ксм	VF2 (0xA14A	h) Touch Key	Fast Moving	Average Reg	jister 2 RO (0	x00)		
	7	6	5	4	3	2	1	0
RD				TKCMV	F[23-16]			•
WR					-			
KCM	VS0 (0xA140	h) Touch Key	Slow Moving	g Average Re	gister 0 RO (()x00)		
	7	6	5	4	3	2	1	0
RD				TKCM	VS[7-0]			
ND								
WR					-			
WR	VS1 (0xA14E)h) Touch Key	Slow Moving		-)x00)		
WR	VS1 (0xA14E 7	Dh) Touch Key	Slow Moving		-)x00) 2	1	0
WR	· ·			g Average Re	gister 1 RO ((-	1	0
WR ſ KCM	· ·			g Average Re	- gister 1 RO (0 3	-	1	0
WR KCM RD WR	7		5	g Average Re 4 TKCMV	- gister 1 RO ((3 /S[15-8] -	2	1	0
WR KCM RD WR	7	6	5	g Average Re 4 TKCMV	- gister 1 RO ((3 /S[15-8] -	2	1	0
WR KCM RD WR	7 VS2 (0xA14E	6 Eh) Touch Key	5 Slow Moving	g Average Re 4 TKCMV g Average Re 4	gister 1 RO ((3 /S[15-8] - gister 2 RO ((2 ()x00)		

RD	 TKCMVS[23-16]	· · · ·
WR	-	

14. **Touch Kev Controller II**

For different EMI environment, a second touch-key controller is implemented. This touch key controller is based on switched capacitance. The block diagram is shown in the following. P0.0 is used to connect an external reference capacitor (typically 0.01uF). The sense capacitor is connected through the ANIO selection of the IOCELL. The software will issue a start command to start the detection. The CREF is first zeroed by turning on a switch to VSS and then released. CKEY is then starts repetitive cycles of charged to VREF and dump the charge onto CREF. At the same time the sequencer keep counts of the cycles. When CREF is charged to 34 VREF, the detection is completed and the number of cycles is stored in COUNT register, and an interrupt is issued so software can read out the COUNT for processing. The interrupt vector is shared with Touch Controller I. The touch key controller II operates on IOSC or reduced frequencies of IOSC.

TKCCFGII (0xA150h) Touch Key Controller II Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	TKCIIEN	PSREN	VREF	VTH		CDTIN	1E [3-0]	
WR	TKCIIEN	PSREN	VREF	VTH		CDTIN	1E [3-0]	
	TKCIIEN PSREN VREF VTH CDTIME[3-0]	Pseudo I VREF Se VREF=0 VREF=1 engineer Compara VTH=0 u VTH=1 u Charge a CDTIME	uses VDD18 user can't use ator Threshold uses ½ VREF uses ¾ VREF and Dump Bas	Enable as reference this setting c as threshold as threshold se Time Setting es the base ting	g	nout pre-consu and dump dur		

TKCAFGII (0xA151h) Touch Key Controller II Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	IOEN		ZERO[2-0]			CFIL	_[3-0]	
WRIOENZERO[2-0]CFIL[3-0]								
IOEN IOCELL NMOS for Zero CREF Enable This controls (ZERO[2-0] +1)*128 SYSCLK IOCELL NMOS (12mA@3V) turn on.								on.
	ZERO[2-0] CREF Clear to 0V Duration							
Revision		1		Page 128 of 1	73			

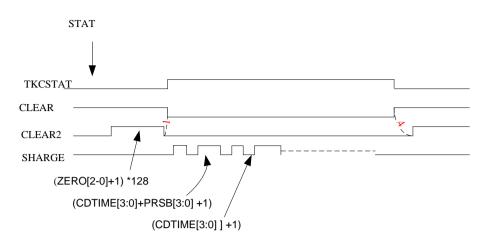
The total zero duration is (4+128*(ZERO[2-0]+1)+1) SYSCLK period, where T is The internal switch (2mA@3V) is turned on for (4+128*(ZERO[2-0]+1) +1) SYSCLK duration.

CFIL[3-0] Comparator Filter Delay The analog output of the comparator is filtered by CFIL[3-0]. The filter output is asserted when preceding CFIL[3-0] samples (sampled by IOSC) are all ones. variable range 1 ~15.

TKCCMDII (A152h) Touch Key Controller II Command and Interrupt Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	TKCINTEN	TKCCNT[17-16] ASHIFT RPT[1-0] IN		INTF	BUSY					
WR	TKCINTEN	-		ASHIFT	FT RPT[1-0] INTF START					
	TKCINTEN		•	Interrupt Enal	ole					
	TKCCNTII[17-	16] Touch Key	y Controller II	Count MSB						
	ASHIFT	Automatic	Shift for RPT	•						
					It is dependin					
		RPT=4, th	en the result	is automatical	ly shifted right	by 2 bits, if R	PT=8, then sh	ift 3 bits.		
		If ASHIFT:	=0, then the re	esult is accum	ulated by all th	ne count.				
	RPT[1-0]	Repeat Co	onversion Cyc	cle Count						
			RPT[2-0] defines the repetition count of the conversion cycles. The TKCCNTII is							
		accumulat	accumulated with multiple conversions.							
		00 = 1								
		01 = 2								
		10 = 4								
		11 = 8								
	INTF	Interrupt F	lag							
		INTF is set by hardware and must be cleared by software								
	START	Start Conv	Start Conversion							
		Set START=1 will initiate the conversion sequence and it is self cleared when conversion is								
		completed	1.		-					
	BUSY	Busy State	us							
TKCC	TI (0x A 1526)	Touch Koy C	Controllor II C	ount Dogisto		n)				

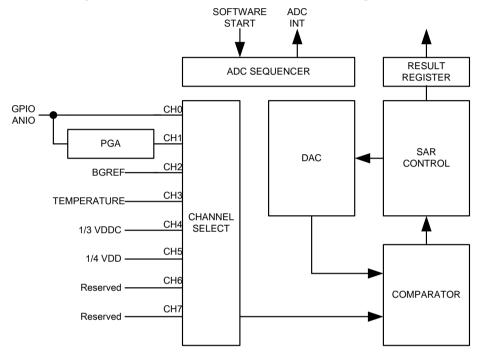
TKCCNTL (0xA153h) Touch Key Controller II Count Register L R/W (0x00)


	7	6	5	4	3	2	1	0		
RD	-									
WR	TKCCNTII[7-0]									

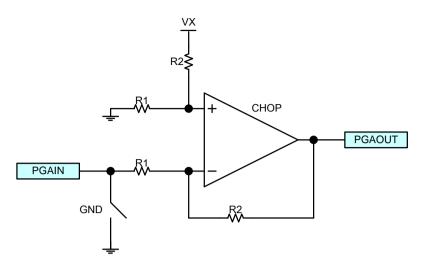
TKCCNTH (0xA154h) Touch Key Controller II Count Register H R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	- · · · · · · · · · · · · · · · · · · ·								
WR	TKCCNTII[15-7]								

TKCCNTII is cleared when each START command is issued. And it contains the charge conversion cycle count when the conversion is done.



15. <u>12-Bit SAR ADC (ADC)</u>


The on-chip ADC is a 12-bit SAR based ADC with maximum ADC clock rate of 4MHz (2.5V - 5V) or 500KHz (1.8V - 2.4V) and each conversion takes 64 cycles to complete. The conversion is partitioned into 4-sub conversion (each 16 cycles) for cancellation of internal offsets. Typical ADC accuracy is about 10-Bit to 11-Bit at 5V reference. The ADC clock is programmable and set by the ADC clock scaler. The ADC full range reference can be selected using VDD or VDDC (1.8V). The full range can be calibrated using on-chip 1.2V reference as the input. When enabled, the ADC consumes about 2mA of current. The ADC also includes hardware to perform result average. Average can be set to 1 to 8 times.

In CS5523, each inherent channel is further multiplexed to various external pins, which are shared with GPIO ports and the connection is through the IOCONFIG ANEN control. The block diagram of ADC is shown in the following.

To enhance the resolution of ADC, a Programmable Gain Amplifier (PGA) can be inserted in the input path. The gain setting can be up to 20. The PGA is an inverting type using OPAMP, and its block diagram is shown as following. R1 is approximately 20K Ohm. VX is a voltage reference of VDDH-0.4V or VDDC-0.4V. GND controls the PGA input to 0V. CHOP is used to control OPAMP offset. For precision measurement, software should always first set GND=1, turn-off PGAIN input and obtain an ADC result (ADCR1). Then a second result is obtained by connecting to PGAIN (ADCR2) and set GND=0. The measurement is obtained by the difference between ADCR1 and ADCR2. In this procedure, offset of the PGA as well as VX is canceled automatically. Because PGA input is connected to the GPIO ANIO1 bus, when switching the IOCELL's ANIO1, the ADC must also wait after PGA to settle. PGA settling time is approximately 10usec.

ADCCFG (0xA9h) ADC Configuration Register RW 0000000

	7	6	5	4	3	2	1	0				
RD	ADCEN	ADCINTE	ADCFM	TEMPSEN	VDDSEN		PRE[2-0]					
WR	ADCEN	ADCINTE	ADCFM	TEMPSEN	VDDSEN		PRE[2-0]					
	ADCEN	ADCEN=0 When AD	enables AD() puts ADC in CEN is set fro	C. to power dowr om 0 to 1, the j to ensure AD0	program need		ast 20usto allo	w				
	ADCINTE	ADCINTE=1 enables the ADC interrupt when conversion completes. ADCINTE=0 disables the ADC interrupt										
	ADCFM ADC Result Format Control bit ADCFM = 1 sets ADC result as MSB justified. ADCAH contains the MSB bits of the result. ADCAL[7-4] contains LSB results and ADCAL[3-0] is filled with 0000. ADCFM = 0 sets ADC result as LSB justified. ADCAH[7-4] is filled with 0000. ADCAH[3-0] contains MSB result. ADCAL contains the LSB results.											
	TEMPSEN VDDSEN PRE[2-0]	1/3VDDC	=1 will turn on	nable 4 VDD Enable these two bia		DDSEN should	d be 0 to save	power.				
		PRE[2-0]	ADC CLO	OCK							
		0		SYSCL	K/2							
		1		SYSCL	K/4							
		2		SYSCL	K/8							
		3		SYSCL	٢/16							
		4		SYSCL	(/32							
	5 SYSCLK/64											
		6		SYSCLK	/128							
		7		SYSCLK	/256							
ADCCT	DCCTL (0xCEh) ADC Control Register RW 00XXX000											

	7	6	5	4	3	2	1	0
RD		AVG[2-0]			CHSEL[2-0]		ADCIF	CSTART

CS5523 PRELIMINARY

WR		AVG[2-0]		(CHSEL[2-0]		ADCIF	CSTART		
	AVG[2-0]	setting is	controls the hacked changed only s averaged in s	when ADC is :	stopped. If mu	Itiple channels				
		AVG2	AVG1	AVG0	ADC	Result				
		0	0	0	1 Times Ave	erage				
		0	0	1	2 Times Ave	erage				
		0	1	0	4 Times Ave	erage				
		0	1	1	8 Times Ave	erage				
		1	0	0	Test Mode C)P/CMP ++				
		1	0	1	Test Mode C)P/CMP +-				
		1	1	0	Test Mode OP/CMP -+					
		1	1	1						
	CHSEL[2-0]	ADC Cha	nnel Select				—			
		CHSEL[2	2] CHSEL[1]	CHSEL[0]	ADC	Channel				
		0	0	0	GPIO ANIO					
		0	0	1	PGA Output					
		0	1	0	BGREF Output					
		0	1	1	Temperature	e Sensor				
		1	0	0	1/3VDDC					
		1	0	1	1/4 VDD					
		1	1	0	Reserved					
		1	1	1	Reserved					
		ADCIF is ADCL and interrupt. result is u Software Set this C cleared w	ADC Conversion Completion Interrupt Flag bit ADCIF is set by hardware when the conversion is completed and new result is written to ADCL and ADCH result registers. If ADC interrupt is enabled, this also generates an interrupt. This bit is cleared when ADCL is read. When this flag is set, no new conversion result is updated. Software Start Conversion bit Set this CSTART=1 to trigger an ADC conversion on selected channels. This bit is self- cleared when the conversion is done.							
ADCP	· ,	DC PGA Cont	-			<u>^</u>	4	-		
	7		5	4	3	2	1	0		

	1	0	5	-	5	2	1	0						
RD	PGAEN	REFSEL	VXSEL	-	-	GND	GAIN	I [1-0]						
WR	PGAEN	REFSEL	VXSEL	-	-	GND	GAIN[1-0]							
	PGAEN	PGA En	PGA Enable											
	REFSEL	ADC Re	ADC Reference Select											
		REFSEL	REFSEL=0 uses VDDH as ADC full-scale reference											
		REFSEL	REFSEL=1 uses VDDC as ADC full-scale reference											
	VXSEL	VX PGA	VX PGA Reference Select											
		VXSEL=	0 uses VDDH-	0.4 as PGA re	ference									
		VXSEL=	1 uses VDDC-	0.4 as PGA re	ference									
			erence are not a											
	GND	When G	ND=1, the PGA	A input is isola	ted from input	and is forced t	to VSS.							
	GAIN[1-0]	GAIN[1-	GAIN[1-0] controls the PGA gain. The default is 00.											
		GAIN[1-	·0]	Gain										

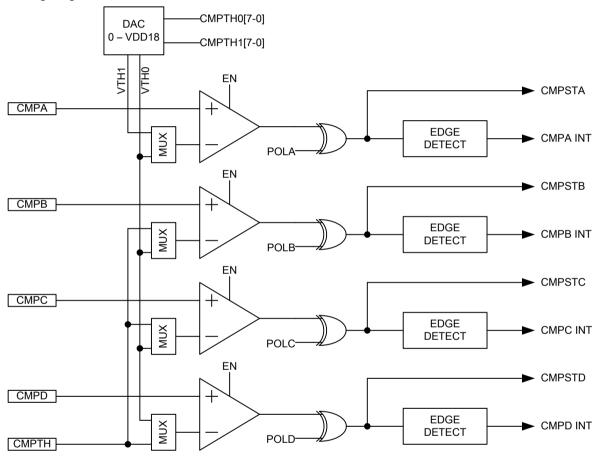
00	5
01	10
10	15
11	20

ADCH and ADCL are the high and low byte result registers respectively, and are read-only. Reading low byte result also clears its corresponding interrupt flag. If the flag is not cleared, no new result is updated. The software should always read the low byte last. The format of the high byte and low byte depends on ADCFM setting.

ADCL (0xBAh) ADC Result Register Low Byte RW XXXXXXXX

	7	6	5	4	3	2	1	0	
RD	ADC Result								
WR		-							

ADCH (0xBBh) ADC Result Register High Byte RW XXXXXXXX


	7	6	5	4	3	2	1	0	
RD	ADC Result								
WR	-								

16. Analog Comparators (ACMP)

CS5523 has four analog comparators as its on-chip external peripherals. When enabled, each comparator consumes about 250uA. The input signal range is from 0 to VDD. There are two 8-bit R-2R DAC associated with the comparators to generate the compare threshold. The R-2R DAC uses the internal 1.8V supply as the full-scale range thus limiting the comparator threshold from 0V to 1.8V in 256 steps. Channel B/C/D can select a common external threshold. The inputs of the comparators are multiplexed with multi-function GPIO pins. To use these ports as comparator inputs, the ANEN must be enabled and other drivers to be in high-impedance state. P1.6 is used for both CMPA and CMPD thus can be configured to detect two thresholds simultaneously. P1.7 and P2.0 are used for CMPB and CMPC. P2.1 is used for comparator external threshold.

The CPU can read the real-time outputs of the comparator directly through register access. The output is also sent to an edge-detector and any edge transition can be used to trigger an interrupt. The stabilization time from off state to enabled state of the comparator block is about 20usec. The block diagram of the analog comparator is shown in the following diagram.

CMPCFGAB (0xA030h) Analog Comparator A/B Configuration Register RW 0000000

	7	6	5	4	3	2	1	0		
RD	CMPENA	THSELA	INTENA	POLA	CMPENB	THSELB	INTENB	POLB		
WR	CMPENA	THSELA	INTENA	POLA	CMPENB	THSELB	INTENB	POLB		
	CMPENA Comparator A Enable bit. Set to enable the comparator. When CMPENA is set from 0 to 1, the program needs to wait at least 20usallowing analog bias to stabilize to ensure comparator A's proper functionality.									
	THSELA				THSELA = 0, t ator A uses VT			0 as the		
	INTENASet to enable the comparator A's interrupt.POLAChannel A Output polarity control bit POLA=0 set default polarity									

	POLA=1 reverse the output polarity of the comparator
CMPENB	Comparator B Enable bit. Set to enable the comparator.
	When CMPENB is set from 0 to 1, the program needs to wait at least 20usallowing analog bias to stabilize to ensure comparator B's proper functionality.
THSELB	Comparator B Threshold Select Bit. THSELB = 0, the comparator B uses VTH0 as the threshold. THSELB = 1, the comparator B uses external threshold.
INTENB	Set to enable the comparator B's interrupt.
POLB	Channel B Output polarity control bit
	POLB=0 set default polarity
	POLB=1 reverse the output polarity of the comparator

CMPCFGCD (0xA031h) Analog Comparator C/D Configuration Register RW 0000000

	7	6	5	4	3	2	1	0			
RD	CMPENC	THSELC	INTENC	POLC	CMPEND	THSELD	INTEND	POLD			
WR	CMPENC	THSELC	INTENC	POLC	CMPEND	THSELD	INTEND	POLD			
	CMPENC Comparator C Enable Bit. Set to enable the comparator. When CMPENC is set from 0 to 1, the program needs to wait at least 20usto allow analog bias to stabilize to ensure comparator C's proper functionality.										
	THSELC										
	INTENC	Set to enable the comparator C interrupt.									
	POLC										
	CMPEND Comparator D Enable Bit. Set to enable the comparator. When CMPEND is set from 0 to 1, the program need to wait at least 20usto allow analog bias to stabilize to ensure comparator D's proper functionality.										
	THSELD	Comparator D Threshold Select Bit. THSELD = 0, the comparator D uses VTH0 as the threshold. THSELD = 1, the comparator D uses external threshold.									
	threshold. THSELD = 1, the comparator D uses external threshold.INTENDSet to enable the comparator D interrupt.POLDChannel D Output polarity control bit POLD=0 set default polarity POLD=1 reverse the output polarity of the comparator										

CMPVTH0 (0xA032h) Analog Comparator Threshold Control Register RW 0000000

	7	6	5	4	3	2	1	0		
RD		VTH0 Register								
WR		VTH0 Register								

CMPVTH0 register controls the comparator threshold VTH0 through 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is at 1.8V. When not used, it should be set to 0x00 to save power consumption.

CMPVTH1 (0xA033h) Analog Comparator Threshold Control Register RW 0000000

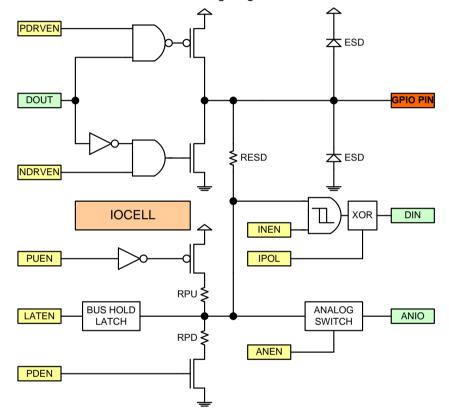
-	, ,	0			0				
	7	6	5	4	3	2	1	0	
RD	VTH1 Register								
WR	VTH1 Register								

CMPVTH1 register controls the comparator threshold VTH1 through 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is at 1.8V. When not used, it should be set to 0x00 to save power consumption.

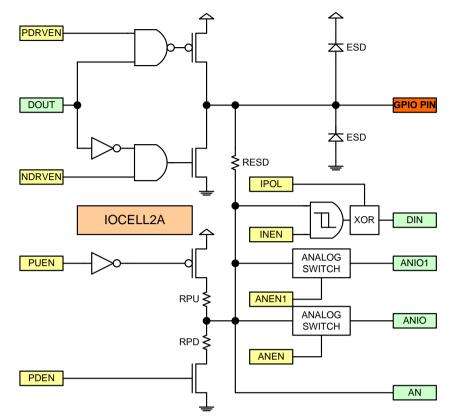
CMPST (0x94h) Analog Comparator Status Register RO 0000000

	7	6	5	4	3	2	1	0
RD	CMPIFD	CMPIFC	CMPIFB	CMPIFA	CMPSTD	CMPSTC	CMPSTB	CMPSTA
WR	CMPIFD	CMPIFC	CMPIFB	CMPIFA	CMPHY	′SB[1-0]	CMPHY	′SA[1-0]

CMPIFD	Comparator D Interrupt Flag bit. This bit is set when CMPSTD is toggled and the comparator D setting is enabled. This bit must be cleared by software.
CMPIFC	Comparator C Interrupt Flag bit. This bit is set when CMPSTC is toggled and the comparator C setting is enabled. This bit must be cleared by software.
CMPIFB	Comparator B Interrupt Flag bit. This bit is set when CMPSTB is toggled and the comparator B setting is enabled. This bit must be cleared by software.
CMPIFA	Comparator A Interrupt Flag bit. This bit is set when CMPSTA is toggled and the comparator A setting is enabled. This bit must be cleared by software.
CMPSTD	Comparator D Real-time Output. If the comparator is disabled, this bit is forced low.
CMPSTC	Comparator C Real-time Output. If the comparator is disabled, this bit is forced low.
CMPSTB	Comparator B Real-time Output. If the comparator is disabled, this bit is forced low.
CMPSTA	Comparator A Real-time Output. If the comparator is disabled, this bit is forced low.
CMPHYSB[1-0]	Comparator B/C/D Hysteresis Enable bit.
	CMPHYSB[1-0] = 00 disables comparator hysteresis
	CMPHYSB[1-0] = 01 comparator hysteresis = 10mV
	CMPHYSB[1-0] = 10 comparator hysteresis = 20mV
	CMPHYSB[1-0] = 10 comparator hysteresis = 30mV
CMPHYSA[1-0]	Comparator A Hysteresis Enable bit.
	CMPHYSA[1-0] = 00 disables comparator hysteresis
	CMPHYSA[1-0] = 01 comparator hysteresis = 10mV
	CMPHYSA[1-0] = 10 comparator hysteresis = 20mV
	CMPHYSA[1-0] = 10 comparator hysteresis = 30mV



17. GPIO Port Function and Pin Configurations


This section describes the pin functions and configurations. Almost all signal pins are multi-functional with default setting as a GPIO port pin. Therefore each signal pin requires two registers to configure the I/O capability and the function selection. The following describes the control and contents of these registers and the register names and pin names are referenced by their default GPIO port name, CS5523 employs a configurable I/O buffer design. The standardized I/O design allows flexible configuration of the digital I/O function such as open-drain, open-source, pull-up, pull-down, bus-holder capabilities. In addition to digital I/O function, the standardized I/O also provides analog I/O capability that can be selected when the GPIO pin is shared with analog peripheral purposes such as analog OPAMP, ADC input or DAC output.

17.1 IO Cell Configurations

The supply voltage of the I/O buffer uses VDD (2.5V to 5.5V). The input and output level is referenced to VDD and 0V. Since the design is standardized, the I/O design offers a uniform ESD performance. The functional block diagram of the standard I/O buffer is shown in the following diagram.

There are some variations of the IOCELL. IOCELLHP, IOCELLHN are IOCELL with high P drive and high N drive capabilities respectively. IOCELLHP can source up to 16mA, and IOCELLHN can sink up to 16mA. The configuration control of IOCELLHP and IOCELLHN is the same as IOCELL. IOCELL2A is IOCELL with two analog multiplexer switches, ANIO and ANIO1. The control of IOCELL2A uses IOCFG's ANEN1 to replace LATEN.

From the diagram, there are 7 control bits for the IOCFGPx.y register, and these registers are located at XFR 0xA040 – 0xA047 for P0.0 to P0.7, 0xA048 – 0xA04F for P1.0 to P1.7, 0xA060 – 0xA067 for P2.0 to P2.7, and 0xA068 – 0xA06F for P3.0 to P3.7. The definitions of IOCFGPx.y are described in the following table.

\n/Eh nv/ngn_nv/ngE) IO Buffor Configu	uration Dogistors D/W/ (0v00)
104111, 00000 - 00000	I D Duner Connigu	uration Registers R/W (0x00)

	(0)		•/4 .0 •/	,	, ega an e.			
	7	6	5	4	3	2	1	0
RD	INEN	LATEN/ANEN1	PUEN	PDEN	ANEN	PDRVEN	NDRVEN	IPOL
WR	INEN	LATEN/ANEN1	PUEN	PDEN	ANEN	PDRVEN	NDRVEN	IPOL
	INEN	Input buffer co used, it should default value.						
	LATEN	Bus holder latch control. Set this bit to enable the bus holder latch connected to the pin. When enabled, the bus holder holds the last actively driven state of the pin. The latch only provides a very weak drive therefore should not affect the signal when pin is actively driven. DISABLE is the default value.						e latch only
	ANEN1	Analog MUX 1 DISABLE is the			s bit to connec	t the pin to the	e internal anal	og peripheral.
	PUEN	Pull up resistor The pull-up res						
	PDEN	Pull down resis	stor enab	le control. Set	this bit to ena	ble pull-down	resistor conn	ection to the
	ANEN	pin. The pull-down resistor is approximately 100K Ohm. DISABLE is the default value. Analog MUX enable control. Set this bit to connect the pin to the internal analog peripheral. DISABLE is the default value.						
	PDRVEN	Output PMOS is the default v		able. Set this	bit to enable t	he PMOS of t	he output drive	er. DISABLE
	NDRVEN	Output NMOS driver enable. Set this bit to enable the NMOS of the output driver. DISABLE is the default value.						er. DISABLE
The follo	The following table shows various configurations of the I/O buffer.							

IO Functions INEN LATEN PUEN PDEN ANEN PDRVEN NDRVEN

Input only	1	0	0	0	0	0	0
Input /w pull up	1	0	1	0	0	0	0
Input /w pull down	1	0	0	1	0	0	0
Input /w bus holder	1	1	0	0	0	0	0
Output with CMOS push-pull	0	0	0	0	0	1	1
Output /w NMOS open-drain (sink)	0	0	0	0	0	0	1
Output /w NMOS open-drain (sink) and weak pull up	0	0	1	0	0	0	1
Output /w PMOS open-drain (source)	0	0	0	0	0	1	0
Output /w PMOS open-drain (source) and weak pull down	0	0	0	1	0	1	0
I/O 8051 like	1	1	1	0	0	0	1
I/O CMOS	1	0	0	0	0	1	1
Analog function	0	0	0	0	1	0	0
Oscillator pin	0	0	0	0	0	0	0

17.2 GPIO Port Multifunction

Because each signal pin is a multi-functional and the function is shared with GPIO port, therefore each pin requires MFCFGP register to control, which function is in effect and which peripherals are connected to the signal pins. These selection and definitions are pin specific and product specific. The following description describes the selection and control for CS5523 signal pins.

MFCFGP0.0 (0xA050) GPIO P0.0 Function Configuration Register R/W (0x00)

-	· · · · · · · · · · · · · · · · · · ·	,		3	- -	/				
	7	6	5	4	3	2	1	0		
RD	TKC2EN		-	CEX4EN	SSNEN	PINT1EN	PINT0EN	GPIOEN		
WR	TKC2EN		-	CEX4EN	SSNEN	PINT1EN	PINT0EN	GPIOEN		
	TKC2EN	Enable T	Enable Touch Key Controller II							
	CEX4EN	CEX4EN	CEX4EN=1 enable this pin as CEX I/O for CCP4.							
	SSNEN	SSNEN=	SSNEN=1 uses this pin as SPI SSN input.							
	PINT1EN	Pin Inter	Pin Interrupt Enable Control Bit.							
		PINT1EN	N=1 configures	s this pin as ar	n input conditio	on to PINT1 in	terrupt. More	than one pin		
		can be a	n be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINT0EN	Pin Inter	rupt Enable Co	ontrol Bit.						
		PINTOEN	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin							
		can be a	ssigned to PIN	T0. And one	pin can be ass	signed to both	PINT0 both P	INT1.		
	GPIOEN	GPIO Fu	nction Enable	Bit. Set this b	it to enable Gl	PIO function.	DISABLE is the	e default		
		value.								

MFCFGP0.1 (0xA051h) GPIO P0.1 Function Configuration Register R/W (0x00)

7	6	5	4	3	2	1	0
RD KEY	EN -	-	CEX5EN	-	PINT1EN	PINT0EN	GPIOEN
WR KEY	EN -	-	CEX5EN	-	PINT1EN	PINT0EN	GPIOEN
KEY1EN Touch Key1 Enable bit. CEX5EN CEX5EN=1 enable this pin as CEX I/O for CCP5. PINT1EN Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1. PINT0EN Pin Interrupt Enable Control Bit.							

GPIOEN

PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP0.2 (0xA052h) GPIO P0.2 Function Configuration Register R/W (0x00)

						. ,		
	7	6	5	4	3	2	1	0
RD	KEY2EN	-	-	-	-	PINT1EN	PINT0EN	GPIOEN
WR	KEY2EN	-	-	-	-	PINT1EN	PINT0EN	GPIOEN
	KEY2EN PINT1EN	Pin Interru PINT1EN:	Touch Key2 Enable bit. Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.					
	PINT0EN	PINT0EN:	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.					
	GPIOEN	GPIO Fur value.	ction Enable	Bit. Set this bi	t to enable GF	PIO function.	DISABLE is the	e default

MFCFGP0.3 (0xA053h) GPIO P0.3 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	KEY3EN	-	-	-	-	PINT1EN	PINT0EN	GPIOEN	
WR	KEY3EN	-	-	-	-	PINT1EN	PINT0EN	GPIOEN	
	KEY3EN	Touch Ke	Touch Key3 Enable bit.						
	PINT1EN	Pin Interru	Pin Interrupt Enable Control Bit.						
		PINT1EN=1 configures this pin as an input condition							
			•		oin can be ass	igned to both	PINT0 both PI	NT1.	
	PINT0EN	Pin Interru	upt Enable Co	ntrol Bit.					
		PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin							
		can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.							
	GPIOEN		ction Enable	Bit. Set this bi	t to enable GF	PIO function.	DISABLE is the	e default	
		value.							

MFCFGP0.4 (0xA054h) GPIO P0.4 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	KEY4EN	-	-	TXD0EN	-	PINT1EN	PINT0EN	GPIOEN
WR	KEY4EN	-	-	TXD0EN	-	PINT1EN	PINT0EN	GPIOEN
	KEY4EN PINT1EN	Pin Interi PINT1EN	Touch Key4 Enable bit. Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.					
	PINTOEN	PINT0EN can be a	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.					
	TXD0EN GPIOEN		•		put for UART(it to enable GI		DISABLE is the	e default

MFCFGP0.5 (0xA055h) GPIO P0.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	KEY5EN	-	-	RXD0EN	-	PINT1EN	PINT0EN	GPIOEN
WR	KEY5EN	-	-	RXD0EN	-	PINT1EN	PINT0EN	GPIOEN

KEY5EN	Touch Key5 Enable bit.
PINT1EN	Pin Interrupt Enable Control Bit.
	PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.
PINT0EN	Pin Interrupt Enable Control Bit.
	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.
RXD0EN	RXD0EN=1 uses this pin as RXD input for UART0
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP0.6 (0xA056h) GPIO P0.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	KEY6EN		TXD2EN	TXD0EN	RXD2EN -	PINT1EN	PINT0EN	GPIOEN			
WR	KEY6EN		TXD2EN	TXD0EN	RXD2EN	PINT1EN	PINT0EN	GPIOEN			
	KEY6EN	Touch K	ey6 Enable bi	t.							
	RXD2EN	RXD2EN	RXD2EN=1 use this pin as RXD input for EUART2								
	TXD2EN TXD2EN=1 use this pin as TXD output for EUART2										
	TXD0EN	TXD0EN=1 uses this pin as TXD output for UART0									
	PINT1EN	Pin Inter	rupt Enable Co	ontrol Bit.							
					n input condition pin can be ass						
	PINT0EN	Pin Inter	rupt Enable Co	ontrol Bit.	-	-					
			PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN	GPIO Fu value.	nction Enable	Bit. Set this b	it to enable GI	PIO function.	DISABLE is the	e default			

MFCFGP0.7 (0xA057h) GPIO P0.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	KEY7EN	-	RXD2EN	RXD0EN	TXD2EN	PINT1EN	PINT0EN	GPIOEN	
WR	KEY7EN	-	RXD2EN	RXD0EN	TXD2EN	PINT1EN	PINT0EN	GPIOEN	
	KEY7ENTouch Key7 Enable bit.RXD2ENRXD2EN=1 use this pin as RXD input for EUART2RXD0ENRXD0EN=1 uses this pin as RXD input for UART0TXD2ENTXD2EN=1 use this pin as TXD output for EUART2PINT1ENPin Interrupt Enable Control Bit.PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0								
	PINT0ENPin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.GPIOENGPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default								
		value.							

MFCFGP1.0 (0xA058h) GPIO P1.0 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	KEY8EN	-	TXD2EN	CEX0EN	TXD3EN	PINT1EN	PINT0EN	GPIOEN
WR	KEY8EN	-	TXD2EN	CEX0EN	TXD3EN	PINT1EN	PINT0EN	GPIOEN
	KEY8EN TXD2EN TXD3EN CEX0EN	TXD2EN TXD3EN	=1 use this pir	n as TXD outp	out for EUART: out for EUART: EX I/O			

PINT1EN	Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.
PINT0EN	Pin Interrupt Enable Control Bit.
	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP1.1 (0xA059h) GPIO P1.1 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	KEY9EN	-	RXD2EN	CEX1EN	RXD3EN	PINT1EN	PINT0EN	GPIOEN	
WR	KEY9EN	-	RXD2EN	CEX1EN	RXD3EN	PINT1EN	PINT0EN	GPIOEN	
	KEY9ENTouch Key9 Enable bit.RXD2ENRXD2EN=1 use this pin as RXD input for EUART2RXD3ENRXD3EN=1 use this pin as RXD input for EUART3CEX1ENCEX1EN=1 uses this pin as CCP1 CEX I/OPINT1ENPin Interrupt Enable Control Bit.PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.								
	PINTOEN	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.							
	GPIOEN	GPIO Fu value.	nction Enable	Bit. Set this b	it to enable GI	PIO function. L	DISABLE is the	e default	

MFCFGP1.2 (0xA05Ah) GPIO P1.2 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	KEYAEN	SSDA1EN	TXD0EN	CEX2EN	TXD4EN	PINT1EN	PINT0EN	GPIOEN		
WR	KEYAEN	SSDA1EN	TXD0EN	CEX2EN	TXD4EN	PINT1EN	PINT0EN	GPIOEN		
	KEYAENTouch KeyA Enable bit.SSDA1ENSSDA1EN=1 enables this pin as I2CS1 SDA I/O. This must be configured as OD output.TXD0ENTXD0EN=1 uses this pin as TXD output for UART0TXD4ENTXD4EN=1 uses this pin as TXD output for UART4CEX2ENCEX2EN=1 uses this pin as CCP2 CEX I/OPINT1ENPin Interrupt Enable Control Bit.PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0									
	PINTOEN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN	GPIO Fu value.	nction Enable	Bit. Set this b	it to enable GI	PIO function.	DISABLE is the	e default		

MFCFGP1.3 (0xA05Bh) GPIO P1.3 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	KEYBEN	SSCL1EN	RXD0EN	CEX3EN	RXD4EN	PINT1EN	PINT0EN	GPIOEN
WR	KEYBEN	SSCL1EN	RXD0EN	CEX3EN	RXD4EN	PINT1EN	PINT0EN	GPIOEN
	KEYBEN SSCL1EN RXD0EN RXD4EN CEX3EN	SSCL1E RXD0EN RXD4EN	l=1 uses this p	his pin as I2C bin as RXD inp bin as RXD inp	out for UART0 out for UART4		onfigured as C	DD output.

PINT1EN	Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin
	can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.
PINT0EN	Pin Interrupt Enable Control Bit.
	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP1.4 (0xA05Ch) GPIO P1.4 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	KEYCEN	SSCL2EN	-	MSCLEN	-	PINT1EN	PINT0EN	GPIOEN		
WR	KEYCEN	SSCL2EN	-	MSCLEN	-	PINT1EN	PINT0EN	GPIOEN		

KEYCEN	Touch Key C Enable bit.
SSCL2EN	SSCL2EN=1 enables this pin as I2CS2 SCL I/O. This must be configured as OD output.
MSCLEN	MSCLEN=1 enables this pin as I2CM SCL I/O. This must be configured as OD output.
PINT1EN	Pin Interrupt Enable Control Bit.
	PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.
PINT0EN	Pin Interrupt Enable Control Bit.
	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP1.5 (0xA05Dh) GPIO P1.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	KEYDEN	SSDA2EN	-	MSDAEN	-	PINT1EN	PINT0EN	GPIOEN	
WR	KEYDEN	SSDA2EN	-	MSDAEN	-	PINT1EN	PINT0EN	GPIOEN	
	KEYDENTouch KeyD Enable bit.SSDA2ENSSDA2EN=1 enables this pin as I2CS2 SDA I/O. This must be configured as OD output.MSDAENMSDAEN=1 enables this pin as I2CM SDA I/O. This must be configured as OD output.PINT1ENPin Interrupt Enable Control Bit.PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0.								
	PINT0ENPin Interrupt Enable Control Bit.PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.							than one pin INT1.	
	GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP1.6 (0xA05Eh) GPIO P1.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	KEYEEN	T1EN	MSCLEN	CEX0EN	SCKEN	PINT1EN	PINT0EN	GPIOEN
WR	KEYEEN	T1EN	MSCLEN	CEX0EN	SCKEN	PINT1EN	PINT0EN	GPIOEN
	KEYEEN T1EN MSCLEN CEX0EN PINT1EN PINT0EN	T1EN=1 MSCLEN CEX0EN Pin Intern PINT1EN can be a	l=1 enables th l=1 uses this p rupt Enable Co l=1 configures	in as Timer 1 iis pin as I2CM iin as CCP0 C ontrol Bit. s this pin as ar IT1. And one	input. This m / SCL I/O. Th EX I/O. n input condition pin can be ass	is must be cor	nfigured as OE terrupt. More) output. than one pin

GPIOEN

PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP1.7 (0xA05Fh) GPIO P1.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	KEYFEN	T0EN	MSDAEN	CEX1EN	SCKEN	PINT1EN	PINT0EN	GPIOEN		
WR	KEYFEN	T0EN	MSDAEN	CEX1EN	SCKEN	PINT1EN	PINT0EN	GPIOEN		
	KEYFEN TOENTouch Key F Enable bit. TOEN=1 enables this pin as Timer 0 input. This must be configured as OD output.MSDAEN CEX1ENMSDAEN=1 enables this pin as I2CM SDA I/O. This must be configured as OD output.CEX1EN PINT1ENCEX1EN=1 uses this pin as CCP1 CEX I/O.PINT1ENPin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.									
	PINT0EN	PINTOEN		ontrol Bit. s this pin as ar NT0. And one						
	GPIOEN	GPIO Fu value.	nction Enable	Bit. Set this b	it to enable Gl	PIO function.	DISABLE is the	e default		

MFCFGP2.0 (0xA070h) GPIO P2.0 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	ADC0EN	MSCLEN	SSCL1EN	CEX4EN	MOSIEN	TXD2EN	BZEN	GPIOEN
WR	ADC0EN	MSCLEN	SSCL1EN	CEX4EN	MOSIEN	TXD2EN	BZEN	GPIOEN
	ADC0EN MSCLEN SSCL1EN CEX4EN MOSIEN TXD2EN BZEN GPIOEN	MSCLEN SSCL1E CEX4EN MOSIEN TXD2EN BZEN =1	N=1 enables t l=1 uses this p =1 uses this p =1 uses this p uses this pin	his pin as I2CN his pin as I2C hin as CCP4 C in as SPI MO in as EUART2 as buzzer out	SS1 SCL I/O. EX I/O. SI I/O. 2 TXD output put	This must be	nfigured as OE configured as DISABLE is the	OD output.

MFCFGP2.1 (0xA071h) GPIO P2.1 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0							
RD	ADC1EN	MSDAEN	SSDA1EN	CEX5EN	MISOEN	TXD2EN	PWM1EN	GPIOEN							
WR	ADC1EN	MSDAEN	SSDA1EN	CEX5EN	MISOEN	TXD2EN	PWM1EN	GPIOEN							
	ADC1EN ADC channel 1 Enable bit.														
	MSDAEN MSDAEN=1 enables this pin as I2CM SDA I/O. This must be configured as OD output.														
	SSDA1EN	SDA1EN SSDA1EN=1 enables this pin as I2CSS1 SDA I/O. This must be configured as OD output.													
	CEX5EN	CEX5EN	l=1 uses this p	oin as CCP5 C	EX I/O.										
	MISOEN	MISOEN	l=1 uses this p	in as SPI MIS	O I/O.										
	TXD2EN	TXD2EN	=1 uses this p	in as EUART2	2 TXD output										
	PWM1EN	PWM1EN	N = 1 use this p	oin as PWM1 o	output										
	PWM1EN PWM1EN =1 use this pin as PWM1 output GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.														

MFCFGP2.3 (0xA073h) GPIO P2.3 Function Configuration Register R/W (0x00)

7 6 5 4 3 2 1 0

RD	LSEG23	TXD3EN	RXD3EN	RXD2EN	SSNEN	TXD4EN	RXD4EN -	GPIOEN		
WR	LSEG23	TXD3EN	RXD3EN	RXD2EN	SSNEN	TXD4EN	RXD4EN	GPIOEN		
	LSEG23			is pin as LED	•	•				
	XEMGEN XEMGEN=1 enables this pin as EMG input of PWM16.									
	RXD2EN RXD2EN=1 uses this pin as EUART2 RXD input.									
	RXD3EN RXD2EN=1 uses this pin as EUART3 RXD input.									
	RXD4EN	RXD2EN	l=1 uses this p	oin as EUART	4 RXD input.					
	TXD3EN	TXD3EN	=1 uses this p	in as EUART3	3 TXD output.					
	TXD4EN	TXD4EN	=1 uses this p	in as EUART4	TXD output					
	SSNEN	SSNEN=	1 uses this pi	n as SPI SSN	input.					
	SSNEN SSNEN=1 uses this pin as SPI SSN input. GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.									

MFCFGP2.4 (0xA074h) GPIO P2.4 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG22	SSDA2EN	-	T2EN	MSDAEN	SSDA1EN	-	GPIOEN
WR	LSEG22	SSDA1EN	-	T2EN	MSDAEN	SSDA1EN	-	GPIOEN

LSEG22	LSEG22=1 enables this pin as LED segment 22 output
T2EN	T2EN=1 uses this pin as Timer 2 Input.
MSDAEN	MSDAEN=1 enables this pin as I2CM SDA I/O. This must be configured as OD output.
SSDA1EN	SSDA1EN=1 enables this pin as I2CSS1 SDA I/O. This must be configured as OD output
SSDA2EN	SSDA2EN=1 enables this pin as I2CSS2 SDA I/O. This must be configured as OD output
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default
	value.

MFCFGP2.5 (0xA075h) GPIO P2.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	LSEG21	SSCL2EN	PWMCNEN	CEX4EN	MSCLEN	SSCL1EN	-	GPIOEN			
WR	LSEG21	SSCL2EN	PWMCNEN	CEX4EN	MSCLEN	SSCL1EN	-	GPIOEN			
	LSEG21 LSEG21=1 enables this pin as LED segment 21output										
	CEX4EN CEX4EN=1 uses this pin as CCP4 CEX I/O.										
	MSCLEN	MSCLEN	I=1 enables th	is pin as I2CN	I SCL I/O. Th	is must be cor	nfigured as OE	Doutput.			

MSCLENMSCLEN=1 enables this pin as I2CM SCL I/O. This must be configured as OD output.SSCL1ENSSCL1EN=1 enables this pin as I2CSS1 SCL I/O. This must be configured as OD output.SSCL2ENSSCL1EN=1 enables this pin as I2CSS2 SCL I/O. This must be configured as OD output.GPIOENGPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP2.6 (0xA076h) GPIO P2.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG20	-	-	CEX5EN	SSNEN	-	-	GPIOEN		
WR	LSEG20	-	-	CEX5EN	SSNEN	-	-	GPIOEN		
	LSEG20LSEG20=1 enables this pin as LED segment 20output.CEX5ENCEX5EN=1 uses this pin as CCP5 CEX I/O.									
	SSNEN SSNEN=1 uses this pin as SPI SSN input. GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.									

MFCFGP2.7 (0xA077h) GPIO P2.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG19	-	-	T2EXEN	SCKEN	-	-	GPIOEN
WR	LSEG19	-	-	T2EXEN	SCKEN	-	-	GPIOEN

LSEG19	LSEG19=1 enables this pin as LED segment 19 output
T2EXEN	T2EXEN=1 enables this pin as T2EX input for Timer 2.
SCKEN	SCKEN=1 uses this pin as SPI SCK I/O.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default
	value.

MFCFGP3.0 (0xA078h) GPIO P3.0 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG18	-	-	CEX2EN	-	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG18	-	-	CEX2EN	-	PINT1EN	PINT0EN	GPIOEN		
	LSEG18 CEX2EN PINT1EN PINT0EN	 EN CEX2EN=1 enable this pin as CCP2 CEX I/O. EN Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1. 								
	GPIOEN	PIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP3.1 (0xA079h) GPIO P3.1 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	LSEG17	-	-	CEX3EN	-	PINT1EN	PINT0EN	GPIOEN	
WR	LSEG17	-	-	CEX3EN	-	PINT1EN	PINT0EN	GPIOEN	
	LSEG17 CEX3EN PINT1EN	CEX3ENCEX3EN=1 enable this pin as CCP3 CEX I/O.PINT1ENPin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINTOEN GPIOEN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.							

MFCFGP3.2 (0xA07Ah) GPIO P3.2 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	LSEG16	-	TXD2EN	CEX4EN	MOSIEN	PINT1EN	PINT0EN	GPIOEN	
WR	LSEG16	-	TXD2EN	CEX4EN	MOSIEN	PINT1EN	PINT0EN	GPIOEN	
	LSEG16LSEG16=1 enables this pin as LED segment 16 output.TXD2ENTXD2EN=1 uses this pin as EUART2 TXD output.CEX4ENCEX4EN=1 enable this pin as CCP4 CEX I/O.MOSIENMOSIEN=1 uses this pin as SPI MOSI I/O.PINT1ENPin Interrupt Enable Control Bit.PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.								
	PINT0EN Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP3.3 (0xA07Bh) GPIO P3.3 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG15	-	RXD2EN	CEX5EN	MISOEN	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG15	-	RXD2EN	CEX5EN	MISOEN	PINT1EN	PINT0EN	GPIOEN		
	LSEG15	LSEG15	=1 enables thi	s pin as LED :	segment 15 οι	itput.				
	RXD2EN	RXD2EN	RXD2EN=1 uses this pin as EUART2 RXD input.							
	CEX5EN	CEX5EN	CEX5EN=1 enable this pin as CCP5 CEX I/O.							
	MISOEN	MISOEN	MISOEN=1 uses this pin as SPI MISO I/O.							
	PINT1EN	Pin Inter	rupt Enable Co	ontrol Bit.						
	PINTOEN	can be a	PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	FINTOLIN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP3.4 (0xA07Ch) GPIO P3.4 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG14	-	-	CEX5EN	-	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG14	-	-	CEX5EN	-	PINT1EN	PINT0EN	GPIOEN		
	LSEG14	LSEG14=1 and DIGMODE=0 enables this pin as LED segment 14 output. LSEG14=1 and DIGMODE=1 enables this pin as LED digit 14 output.								
	PINT1EN	Pin Interi PINT1EN	Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINT0EN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	CEX5EN GPIOEN	Can be assigned to PINTO. And one pin can be assigned to both PINTO both PINTT. CEX5EN=1 enable this pin as CCP5 CEX I/O. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP3.5 (0xA07Dh) GPIO P3.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD	LSEG13	-	-	CEX4EN	-	PINT1EN	PINT0EN	GPIOEN			
WR	LSEG13	-	-	CEX4EN	-	PINT1EN	PINT0EN	GPIOEN			
	LSEG13	LSEG13=1 and DIGMODE=0 enables this pin as LED segment 13 output. LSEG13=1 and DIGMODE=1 enables this pin as LED digit 13 output.									
	CEX4EN		CEX4EN=1 enable this pin as CCP4 CEX I/O.								
	PINT1EN		Pin Interrupt Enable Control Bit.								
			PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.								
	PINT0EN	Pin Interrupt Enable Control Bit.									
		PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin									
	GPIOEN	can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.									

MFCFGP3.6 (0xA07Eh) GPIO P3.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG11	-	-	CEX3EN	-	PINT1EN	PINT0EN	GPIOEN

CS5523 PRELIMINARY

WR	LSEG11	-	-	CEX3EN	-	PINT1EN	PINT0EN	GPIOEN	
	LSEG11	LSEG11	=1 and DIGM	ODE=0 enable	es this pin as L	ED segment	11 output.		
		LSEG11=1 and DIGMODE=1 enables this pin as LED digit 11 output.							
	CEX3EN	CEX3EN	=1 enable this	s pin as CCP3	CEX I/O.				
	PINT1EN	Pin Interi	upt Enable C	ontrol Bit.					
			PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin						
		can be a	ssigned to PIN	NT1. And one	pin can be ass	signed to both	PINT0 both P	INT1.	
	PINT0EN	Pin Interi	upt Enable C	ontrol Bit.					
							errupt. More t		
		can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.							
	GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default								
		value.							

MFCFGP3.7 (0xA07Fh) GPIO P3.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG9	-	-	CEX2EN	-	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG9	-	-	CEX2EN	-	PINT1EN	PINT0EN	GPIOEN		
	LSEG9				this pin as LE	•	•			
	CEX2EN PINT1EN	CEX2EN Pin Interi PINT1EN	LSEG9=1 and DIGMODE=1 enables this pin as LED digit 9 output. CEX2EN=1 enable this pin as CCP2 CEX I/O. Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINT0EN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP4.0 (0xA0D0h) GPIO P4.0 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG7	-	-	CEX1EN	-	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG7	-	-	CEX1EN	-	PINT1EN	PINT0EN	GPIOEN		
	LSEG7	LSEG7=1 and DIGMODE=0 enables this pin as LED segment 7 output. LSEG7=1 and DIGMODE=1 enables this pin as LED digit 7 output.								
	CEX1EN PINT1EN	CEX1EN Pin Interi PINT1EN	CEX1EN=1 enable this pin as CCP1 CEX I/O. Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINT0EN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1.								
	GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP4.1 (0xA0D1h) GPIO P4.1 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG5	-	-	CEX0EN	-	PINT1EN	PINT0EN	GPIOEN
WR	LSEG5	-	-	CEX0EN	-	PINT1EN	PINT0EN	GPIOEN
	LSEG5			DE=0 enables DE=1 enables	•	•	•	
CEX0EN CEX0EN=1 enable this pin as CCP0 CEX I/O.								

PINT1EN	Pin Interrupt Enable Control Bit. PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.
PINT0EN	Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin
GPIOEN	can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP4.2 (0xA0D2h) GPIO P4.2 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0		
RD	LSEG3	-	-	TXD0EN	-	PINT1EN	PINT0EN	GPIOEN		
WR	LSEG3	-	-	TXD0EN	-	PINT1EN	PINT0EN	GPIOEN		
	LSEG3		LSEG3=1 and DIGMODE=0 enables this pin as LED segment 3 output. LSEG3=1 and DIGMODE=1 enables this pin as LED digit 3 output.							
	TXD0EN	TXD0EN	TXD0EN=1 uses this pin as TXD output for UART0							
	PINT1EN	Pin Interr	Pin Interrupt Enable Control Bit.							
			PINT1EN=1 configures this pin as an input condition to PINT1 interrupt. More than one pin can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1.							
	PINT0EN	Pin Interi	upt Enable Co	ontrol Bit.						
	GPIOEN	PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default								
		value.								

MFCFGP4.3 (0xA0D3h) GPIO P4.3 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG1	-	-	BZEN	-	PINT1EN	PINT0EN	GPIOEN
WR	LSEG1		-	BZEN	-	PINT1EN	PINT0EN	GPIOEN
	LSEG1				s this pin as LE s this pin as LE	•	•	
	BZEN			as buzzer out	•	orgit i comp		
	PINT1EN	Pin Interi	rupt Enable Co	ontrol Bit.				
					n input condition pin can be ass			
	PINT0EN	Pin Interi	rupt Enable Co	ontrol Bit.		0		
	GPIOEN	can be a	ssigned to PIN	NT0. And one	input conditio pin can be ass it to enable Gl	signed to both	PINT0 both P	INT1.

MFCFGP4.4 (0xA0D4h) GPIO P4.4 Function Configuration Register R/W (0x00)

	-	-		-	-			
	7	6	5	4	3	2	1	0
RD	LSEG0	-	-	RXD2EN	-	PINT1EN	PINT0EN	GPIOEN
WR	LSEG0	-	-	RXD2EN	-	PINT1EN	PINT0EN	GPIOEN
	LSEG0				this pin as LE this pin as LE	•	•	
	RXD2EN	RXD2EN	I =1 use this p	in as RXD inp	ut for EUART2	2		
	PINT1EN	Pin Inter	rupt Enable Co	ontrol Bit.				
		can be a	ssigned to PIN	T1. And one	n input condition pin can be ass			
	PINT0EN	Pin Inter	rupt Enable Co	ontrol Bit.				

GPIOEN

PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1. GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP4.5 (0xA0D5h) GPIO P4.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG2	-	-	TXD2EN	-	PINT1EN	PINT0EN	GPIOEN
WR	LSEG2	-	-	TXD2EN	-	PINT1EN	PINT0EN	GPIOEN
	LSEG2			DE=0 enables	•	-	•	
		LSEG2=	1 and DIGMO	DE=1 enables	s this pin as LE	D digit 2 outp	ut.	
	TXD2EN	TXD2EN	=1 use this pi	n as TXD outp	out for EUART	2		
PINT1EN Pin Interrupt Enable Control Bit.								
		PINT1EN	I=1 configures	s this pin as ar	n input conditio	on to PINT1 in	terrupt. More	than one pin
		can be a	ssigned to PIN	NT1. And one	pin can be ass	igned to both	PINT0 both P	INT1.
	PINT0EN	Pin Interr	upt Enable Co	ontrol Bit.		-		
		PINT0EN	=1 configures	this pin as an	input conditio	n to PINT0 int	errupt. More t	than one pin
can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1						INT1		
	GPIOEN		•			•		
GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

MFCFGP4.6 (0xA0D6h) GPIO P4.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG4	-	-	PWM0EN	-	PINT1EN	PINT0EN	GPIOEN
WR LSEG4 PWM0EN - PIN						PINT1EN	PINT0EN	GPIOEN
	LSEG4				s this pin as LE s this pin as LE	-	•	
	PWM0EN PINT1EN	PWM0EI Pin Interi PINT1EN	N =1 use this p rupt Enable Co N=1 configures	oin as PWM0 o ontrol Bit. s this pin as ar	output	on to PINT1 in	terrupt. More	
	can be assigned to PINT1. And one pin can be assigned to both PINT0 both PINT1. PINT0EN Pin Interrupt Enable Control Bit. PINT0EN=1 configures this pin as an input condition to PINT0 interrupt. More than one pin can be assigned to PINT0. And one pin can be assigned to both PINT0 both PINT1							
	GPIOEN		-		it to enable GI	-		

MFCFGP4.7 (0xA0D7h) GPIO P4.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG6	-	-	PWM1EN	-	PINT1EN	PINT0EN	GPIOEN
WR	LSEG6	-	-	PWM1EN	-	PINT1EN	PINT0EN	GPIOEN
	LSEG6				s this pin as LE s this pin as LE	-	•	
	PWM1EN	PWM1E	N =1 use this p	oin as PWM1	output	U .		
	PINT1EN	PINT1EN		s this pin as ar	n input condition pin can be ass			
	PINT0EN	PINT0EN		this pin as an	input conditio pin can be ass			
	GPIOEN	GPIO Fu value.	nction Enable	Bit. Set this b	it to enable GI	PIO function.	DISABLE is the	e default

MFCFGP5.0 (0xA0D8h) GPIO P5.0 Function Configuration Register R/W (0x00)

		,,				(*****)		
	7	6	5	4	3	2	1	0
RD	LSEG8	-	-	MOSIEN	-	-	-	GPIOEN
WR	LSEG8	-	-	MOSIEN	-	-	-	GPIOEN
MECE	LSEG8 MOSIEN GPIOEN GP5.1 (0xA0D	LSEG8= MOSIEN GPIO Fu value.	1 and DIGMO =1 uses this nction Enable	DE=1 enables pin as SPI MC Bit. Set this b	it to enable Gl	D digit 8 outp	-	e default
_	7	6	5	4	3	2	1	0
RD	LSEG10	-	-	MISOEN	-	-	-	GPIOEN
WR	LSEG10	-	-	MISOEN	-	-	-	GPIOEN
	LSEG10 MISOEN GPIOEN	LSEG10 MISOEN	=1 and DIGM0 =1 uses this	DDE=1 enable pin as SPI MIS		ED digit 10 ot	•	e default

MFCFGP5.2 (0xA0DAh) GPIO P5.2 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG12	-	-	T2EN	SCKEN	-	-	GPIOEN
WR	LSEG12	-	-	T2EN	SCKEN	-	-	GPIOEN
	LSEG12 T2EN SCKEN GPIOEN	LSEG12 T2EN=1 SCKEN :	=1 and DIGM0 uses this pin a =1 uses this p	DDE=1 enable as Timer 2 Inp in as SPI SCK	es this pin as L ut. 1/O	ED segment ? ED digit 12 ou PIO function. [e default

MFCFGP5.3 (0xA0DBh) GPIO P5.3 Function Configuration Register R/W (0x00)

				j		(*****)		
	7	6	5	4	3	2	1	0
RD	LCOM0	-	-	-	-	-	-	GPIOEN
WR	LCOM0	-	-	-	-	-	-	GPIOEN
	LCOM0 GPIOEN	LCOM0=	1 and DIGMC	DE=1 enables	s this pin as Ll s this pin as Ll it to enable Gl	ED d-segment	0 output.	e default
MFCF	GP5.4 (0xA0D	Ch) GPIO P5	.4 Function C	onfiguration	Register R/W	(0x00)		
	7	6	5	4	3	2	1	0
RD	LCOM1	-	-	-	-	-	-	GPIOEN
WR	LCOM1	-	-	-	-	-	-	GPIOEN
	LCOM1 GPIOEN	LCOM1=	1 and DIGMC	DE=1 enables	s this pin as Ll s this pin as Ll it to enable Gl	ED d-segment	1 output.	e default

MFCFGP5.5 (0xA0DDh) GPIO P5.5 Function Configuration Register R/W (0x00)765432

RD	7							
RD	7	6	5	4	3	2	1	0
	LCOM2	-	-	-	-	-	-	GPIOEN
WR	LCOM2	-	-	-	-	-	-	GPIOEN
NECE	LCOM2 GPIOEN GP5.6 (0xA0D	LCOM2= GPIO Fu value.	1 and DIGMC nction Enable	DE=0 enables DE=1 enables Bit. Set this b	s this pin as Ll it to enable Gl	ED d-segment PIO function. [2 output.	e default
	7	-		-	3		1	0
	-	6	5	4	3	2	I	
RD	LCOM3	-	-	-	-	-	-	GPIOEN
WR	LCOM3 LCOM3	-	-	- DE=0 enables	-	-	-	GPIOEN
NFCF	GPIOEN GP5.7 (0xA0D	LCOM3= GPIO Fu value.	1 and DIGMC nction Enable	DE=1 enables Bit. Set this b	s this pin as Ll it to enable Gl	ED d-segment PIO function. [3 output.	e default
	7	, 6	5	4	3	2	1	0
RD	LCOM4	LSEG31	-	-	-		-	GPIOEN
WR	LCOM4	LSEG31	-	-	-	-		GPIOEN
VVIX	LCOM4			DE=0 enables	hia nin an L	=D common 4	output	OFICER
1FCF	GPIOEN GP6.0 (0xA0B	value.		Bit. Set this b				
	7	6	5	4	3	2	1	0
		0	0					0
RD	LCOM5	LSEG30	RXD2EN	CEX5EN	BZEN	-	-	-
RD WR	LCOM5	LSEG30 LSEG30	RXD2EN RXD2EN	CEX5EN	BZEN	-	-	GPIOEN
WR	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value.	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC 1 enables th 1 use this pi 1 uses this pin uses this pin nction Enable	CEX5EN DDE=0 enables DDE=1 enables nis pin as LED n as RXD inpu in as CCP5 C as buzzer outp Bit. Set this b	BZEN s this pin as LI s this pin as LI s segment 30 c ut for EUART2 EX I/O put it to enable GI	- ED common 5 ED d-segment output. PIO function. [5 output.	GPIOEN GPIOEN
WR	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN GPIOEN	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value.	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC 1 enables th 1 use this pi 1 uses this pin uses this pin nction Enable	CEX5EN DE=0 enables DE=1 enables his pin as LED n as RXD inpu- bin as CCP5 C as buzzer outp Bit. Set this b	BZEN s this pin as LI s this pin as LI segment 30 c ut for EUART2 EX I/O but it to enable GI Register R/W	- ED common 5 ED d-segment putput. PIO function. [(0x00)	5 output. DISABLE is th	GPIOEN GPIOEN e default
WR MFCF	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN GPIOEN 7	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value. 6	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC =1 enables the =1 use this pin- uses this pin- nction Enable 1 Function C 5	CEX5EN DE=0 enables DE=1 enables nis pin as LED n as RXD inpu in as CCP5 C as buzzer outp Bit. Set this b onfiguration	BZEN s this pin as LI s this pin as LI segment 30 c ut for EUART2 EX I/O but it to enable GI Register R/W 3	- ED common 5 ED d-segment output. PIO function. [5 output. DISABLE is th	GPIOEN GPIOEN e default 0
WR AFCF RD	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN GPIOEN 7 LCOM6	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value. S9h) GPIO P6. 6 LSEG29	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC 1 enables th 1 use this pi 1 uses this pin 1 uses this pin nction Enable 1 Function C 5 TXD2EN	CEX5EN DE=0 enables DE=1 enables his pin as LED n as RXD inpu- bin as CCP5 C as buzzer outp Bit. Set this b onfiguration I 4 CEX4EN	BZEN s this pin as LI s this pin as LI s segment 30 o ut for EUART2 EX I/O put it to enable GI Register R/W 3 PWM0EN	- ED common 5 ED d-segment putput. PIO function. [(0x00)	5 output. DISABLE is th	GPIOEN GPIOEN e default 0 GPIOEN
WR	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN GP6.1 (0xA0B 7 LCOM6 LCOM6	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value. 6 LSEG29 LSEG29	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC 1 enables the 1 use this pinal uses this pinal nction Enable 1 Function C 5 TXD2EN TXD2EN	CEX5EN DDE=0 enables DDE=1 enables nis pin as LED n as RXD inpu- bin as CCP5 C as buzzer outp Bit. Set this b onfiguration I 4 CEX4EN CEX4EN	BZEN s this pin as LI s this pin as LI segment 30 c ut for EUART2 EX I/O but it to enable GI Register R/W 3 PWM0EN PWM0EN	- ED common 5 ED d-segment butput. PIO function. [(0x00) 2 - -	5 output. DISABLE is th 1 -	GPIOEN GPIOEN e default 0
WR AFCF RD	LCOM5 LCOM5 LSEG30 RXD2EN CEX5EN BZEN GPIOEN GPIOEN 7 LCOM6	LSEG30 LSEG30 LCOM5= LCOM5= LSEG30 RXD2EN CEX5EN BZEN=1 GPIO Fu value. 39h) GPIO P6. 6 LSEG29 LSEG29 LCOM6= LCOM6= LSEG29 TXD2EN	RXD2EN RXD2EN 1 and DIGMC 1 and DIGMC 1 and DIGMC 1 enables the 1 uses this pin- uses this pin- nction Enable 1 Function C 5 TXD2EN TXD2EN 1 and DIGMC 1 and DIGMC 1 enables the 1 uses this pin- 1 uses this pin- 1 and DIGMC	CEX5EN DE=0 enables DE=1 enables his pin as LED n as RXD inpu- bin as CCP5 C as buzzer outp Bit. Set this b onfiguration I 4 CEX4EN	BZEN s this pin as LI s this pin as LI s egment 30 c ut for EUART2 EX I/O but it to enable GI Register R/W 3 PWM0EN S this pin as LI s this pin as LI s this pin as LI s egment 29 c 2 TXD output	- ED common 5 ED d-segment output. PIO function. [(0x00) 2 - - ED common 6 ED d-segment	5 output. DISABLE is th 1 - output.	GPIOEN GPIOEN e default 0 GPIOEN

PWM0EN PWM0EN =1 uses this pin as PWM0 output GPIOEN

GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

MFCFGP6.2 (0xA0BAh) GPIO P6.2 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LCOM7	LSEG28	SSNEN	CEX3EN	PWM1EN	-	-	GPIOEN
WR	LCOM7	LSEG28	SSNEN	CEX3EN	PWM1EN	-	-	GPIOEN
	LCOM7	LCOM7=	1 and DIGMC	DE=0 enables	s this pin as Ll	ED common 7	output.	
		LCOM7=	1 and DIGMC	DE=1 enables	s this pin as Ll	ED d-segment	7 output.	
	LSEG28	LSEG28	=1 enables th	his pin as LED	segment 28 d	output.		
	SSNEN	SSNEN :	=1 uses this p	in as SPI SSN	I/O			
	CEX3EN	CEX3EN=1 uses this pin as CCP3 CEX I/O						
	PWM1EN	·						
	GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default						

MFCFGP6.3 (0xA0BBh) GPIO P6.3 Function Configuration Register R/W (0x00)

value.

value.

	7	6	5	4	3	2	1	0
RD	LSEG27	BZEN	RXD2EN	CEX2EN	MISOEN	TXD4EN	RXD4EN	GPIOEN
WR	LSEG27	BZEN	RXD2EN	CEX2EN	MISOEN	TXD4EN	RXD4EN	GPIOEN

LSEG26	LSEG26=1 enables this pin as LED segment 26 output.
BZEN	BZEN=1 use this pin as buzzer output
RXD2EN	RXD2EN=1 use this pin as RXD input for EUART2
CEX2EN	CEX2EN=1 uses this pin as CCP2 CEX I/O
MISOEN	MISOEN=1 uses this pin as SPI MISO I/O.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default
	value.

MFCFGP6.4 (0xA0BCh) GPIO P6.4 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG26	PWM1EN	TXD2EN	CEX1EN	MOSIEN	TXD3EN	RXD3EN	GPIOEN
WR	LSEG26	PWM1EN	TXD2EN	CEX1EN	MOSIEN	TXD3EN	RXD3EN	GPIOEN
	LSEG26 PWM1EN TXD2EN CEX1EN	TXD2EN CEX1EN	N =1 uses this =1 uses this p =1 uses this p	pin as PWM1 bin as EUART2 bin as CCP1 C	2 TXD output EX I/O	butput.		
	MOSIEN	MOSIEN	=1 uses this	pin as SPI MC	I/O.			

GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default

MFCFGP6.5 (0xA0BDh) GPIO P6.5 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0
RD	LSEG25	PWM0EN	BZEN	CEX0EN	SCKEN	TXD4EN	RXD4EN	GPIOEN
WR	LSEG25	PWM0EN	BZEN	CEX0EN	SCKEN	TXD4EN	RXD4EN	GPIOEN
	LSEG25 PWM0EN BZEN CEX0EN SCKEN GPIOEN	BZEN =1 CEX0EN SCKEN :	N =1 uses this I uses this pin I=1 uses this p =1 uses this p	his pin as LED s pin as PWM(as buzzer out bin as CCP0 C in as SPI SCK Bit. Set this b	0 output put EX I/O I/O.		DISABLE is the	e default

GPIOEN

MFCFGP6.6 (0xA0BEh) GPIO P6.6 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	LSEG24	TXD3EN	RXD3EN	CLKOEN	SSNEN	TXD4EN	RXD4EN	GPIOEN	
WR	LSEG24	TXD3EN	RXD3EN	CLKOEN	SSNEN	TXD4EN	RXD4EN	GPIOEN	
	LSEG24	LSEG24	=1 enables thi	s pin as LED s	segment 24 ou	utput.			
	CLKOEN	Clock Ou	tput Function	Enable.					
	GPIOEN GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.								

SSNEN =1 uses this pin as SPI SSN I/O SSNEN

MFCFGP6.7 (0xA0BFh) GPIO P6.7 Function Configuration Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD	PLLFPEN	BGTESTEN	-	-	-	-	-	GPIOEN	
WR	PLLFPEN	BGTESTEN	-	-	-	-	-	GPIOEN	
	PLI EPEN PLI low pass filter input Enable bit. PLI EP is an analog circuit input therefore ANEN in								

PLLFPEN	PLL low pass litter input Enable bit. PLLFP is an analog circuit input therefore ANEN in
	IOCFGP6.7 must also be enabled.
GPIOEN	GPIO Function Enable Bit. Set this bit to enable GPIO function. DISABLE is the default value.

17.3 **GPIO Edge Interrupt**

The GPIO pins can be configured as external pin interrupt input or for wake up purpose. Each port has edge detection logic and latch for rising and falling edge detections.

PIOEDGR0 (0xA028h) Port0 IO Input Rising Edge Detection Register R/W (0x00)

	-	-		-	_						
	7	6	5	4	3	2	1	0			
RD		PR0[7-0]									
WR		PREN0[7-0]									
	PR0[7-0] PREN0[7-0]	PR0[i] is PR0[i] is PR0[i] is Port 0 Fa	set by hardwa latched and m	are when a risi nust be cleare generate the F tection Enable		tected on POF by writing PRE	ΞN0[i]=0.				
				June Defenden		N/ (0- 00)					

PIOEDGF0 (0xA038h) Port0 IO Input Falling Edge Detection Register R/W (0x00)

	•	,		0	•	· ·					
	7	6	5	4	3	2	1	0			
RD		PF0[7-0]									
WR		PFEN0[7-0]									
	PF0[7-0] PFEN0[7-0]	PF0[i] is PF0[i] is PF0[i] is Port 0 Fa	set by hardwa latched and m also used to g alling Edge De	are when a Fal nust be cleared		etected on PO by writing PRE	EN0[i]=0.				

PIOEDGR1 (0xA029h) Port1 IO Input Rising Edge Detection Register R/W (0x00)

	•	,		-	-	· ·					
	7	6	5	4	3	2	1	0			
RD		PR1[7-0]									
WR		PREN1[7-0]									
	PR1[7-0] PORT1.0 to PORT1.7 Rising Edge Detection Status										

PR1[i] is set by hardware when a rising edge is detected on PORT1.i input if PREN1[i]=0. PR1[i] is latched and must be cleared by software by writing PREN1[i]=0. PR1[i] is also used to generate the PIN interrupt if corresponding port PINTEN is enabled.

PREN1[7-0]

PREN1[i]=1 enables the rising edge detection.

PIOEDGF1 (0xA039h) Port1 IO Input Falling Edge Detection Register R/W (0x00)

Port 1 Falling Edge Detection Enable

	7	6	5	4	3	2	1	0		
RD		PF1[7-0]								
WR		PFEN1[7-0]								
	PF1[7-0]	PORT1.(to PORT1.7	Falling Edge [Detection State	us				

PF1[i] is set by hardware when a Falling edge is detected on PORT1.i input if PFEN0[i]=0. PF1[i] is latched and must be cleared by software by writing PREN1[i]=0.

PF1[i] is also used to generate the PIN interrupt if corresponding port PINTEN is enabled.

PFEN1[7-0] Port 1 Falling Edge Detection Enable

PFEN1[i]=1 enables the rising edge detection.

PIOEDGR3 (0xA02Bh) Port3 IO Input Rising Edge Detection Register R/W (0x00)

	7	6	5	4	3	2	1	0			
RD		PR3[7-0]									
WR		PREN3[7-0]									

PR3[7-0]	PORT3.0 to PORT3.7 Rising Edge Detection Status
	PR3[i] is set by hardware when a rising edge is detected on PORT3.i input if PREN3[i]=0.
	PR3[i] is latched and must be cleared by software by writing PREN3[i]=0.
	PR3[i] is also used to generate the PIN interrupt if corresponding port PINTEN is enabled.
PREN3[7-0]	Port 3 Falling Edge Detection Enable
	PREN3[i]=1 enables the rising edge detection.

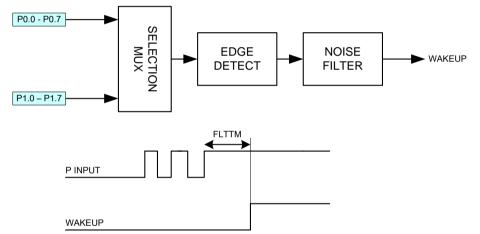
PIOEDGF3 (0xA03Bh) Port3 IO Input Falling Edge Detection Register R/W (0x00)

-		,	1 · · · · · · · · · · · · · · · · · · ·	- J		()					
	7	6	5	4	3	2	1	0			
RD	PF3[7-0]										
WR		PFEN3[7-0]									
	PF3[7-0] PFEN3[7-0]	PF3[i] is PF3[i] is PF3[i] is Port 3 Fa	set by hardwa latched and m also used to g alling Edge De	are when a Fal nust be cleared		etected on PO by writing PRE	EN3[i]=0.				

PIOEDGR4 (0xA02Ch) Port4 IO Input Rising Edge Detection Register R/W (0x00)

	7	6	5	4	3	2	1	0	
RD		PR4[7-0]							
WR		PREN4[7-0]							
	PR4[7-0] PORT4.0 to PORT4.7 Rising Edge Detection Status PR4[i] is set by hardware when a rising edge is detected on PORT4.i input if PREN4[i]=0. PR4[i] is latched and must be cleared by software by writing PREN4[i]=0. PR4[i] is also used to generate the PIN interrupt if corresponding port PINTEN is enabled. PREN4[7-0] Port 4 Falling Edge Detection Enable PREN4[i]=1 enables the rising edge detection.								
PIOED	PIOEDGF4 (0xA03Ch) Port4 IO Input Falling Edge Detection Register R/W (0x00)								
	7	<u>^</u>	-	4	0	0	4	0	

	7	6	5	4	3	2	1	0
_								



RD		PF4[7-0]
WR		PFEN4[7-0]
	PF4[7-0]	PORT4.0 to PORT4.7 Falling Edge Detection Status PF4[i] is set by hardware when a Falling edge is detected on PORT4.i input if PFEN4[i]=0. PF4[i] is latched and must be cleared by software by writing PREN4[i]=0. PF4[i] is also used to generate the PIN interrupt if corresponding port PINTEN is enabled.
	PFEN4[7-0]	Port 4 Falling Edge Detection Enable PFEN4[i]=1 enables the rising edge detection.

17.4 **GPIO Noise filtered Wake Up**

The CPU in CS5523 can enter sleep mode to save standby power consumption. An external pin status change can trigger the wake up of CPU. Each port pin in GPIO Port 0, 1, 3 and 4 can be configured as GPIO Edge interrupts as described in 16.3. Any enabled edge interrupt can also serve as wake up event, i.e. the event performs wake up of CPU and at the same time triggers an interrupt, INT3.

In additional to the edge interrupt wake-up mechanism, a separate GPIO wake up scheme is included which provide noise filter on the triggering signals. The triggering conditions can be defined as either or both of the input rising and falling edges. A noise filter is included following the edge detection as shown in the following diagram. Any noise pulses less than FLTTM are filtered out. The detection sources are GPIO port P0.0 to P0.7 and P1.0 to P1.7, and only one of this can be selected at one time.

... .

GPWK	GPWKCFG (0xA02Eh) GPIO Wakeup Configuration Register R/W (0x00)									
	7	6	5	4	3	2	1	0		
RD	WKRF	WKFF	FLTT	M[1:0]		WKSF	RC[3:0]			
WR	WKRE	WKFE	FLTT	M[1:0]		WKSF	RC[3:0]			
	WKRE Rising Edge Wake Up Enable WKRE=1 enables rising edge wake up									
	WKRF Rising Edge Wake Up Flag WKRF is set to 1 by hardware after rising edge wakeup trigger occurred. WKRF must be cleared by setting WKRE=0.									
	WKFE Falling Edge Wake Up Enable WKFE=1 enables Falling edge wake up									
	WKFF Falling Edge Wake Up Flag WKFF is set to 1 by hardware after rising edge wakeup trigger occurred. WKFF must be cleared by setting WKFE=0.									
	FLTTM[1:0] Noise Filter Setting 00 = 1 msec									

10 = 4 msec11 = 8 msec

WKSRC[3:0]	Wake-Up GPIO Input Selection 0000 = P0.0 0001 = P0.1 0010 = P0.2 0011 = P0.3 0100 = P0.4 0101 = P0.5 0110 = P0.6 0111 = P0.7 1000 = P1.0 1001 = P1.1 1010 = P1.2 1011 = P1.3 1100 = P1.4 1101 = P1.5 1110 = P1.6
	1110 = P1.6 1111 = P1.7

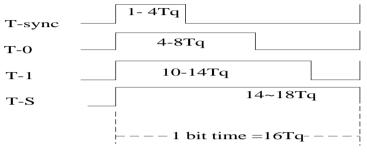
18. IFB Block and Writer Mode and Boot Code/ISP

18.1 IFB Block

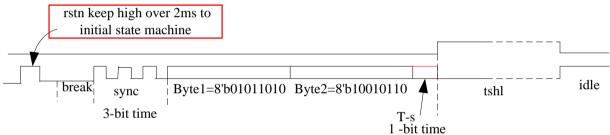
The main flash memory is 64Kx8 and also contains a separate 256B Information Block (IFB). The IFB is partitioned into two parts. 00 to 4F range contains critical manufacture and calibration information. And 50 to FF range contain user data, which can be programmed one time. The IFB cannot be erased but programmable through Flash Controller Command but it can be erased and written through Writer mode. The user data portion can only serve as One-Time-Programmable storage by the user. The following table shows the IFB contents.

ADDRESS	TYPE	DESCRIPTION
00 – 01	М	IFB Version
02 – 07	М	Product Name
08 - 09	М	Package and Product Code
0A – 0B	М	Product Version and Revision
0C	М	Flash Memory Size
0D	М	SRAM Size
0E – 0F	М	Customer Specific Code
10	М	CP1 Information
11	М	CP2 Information
12	М	CP3 Version
13	М	CP3 BIN
14	М	FT Version
15	М	FT BIN
16 - 1B	М	Last Test Date
1C – 1D	М	Boot Code Version
1E	М	Boot Code Segment
1F	М	Checksum for 0x00 – 0x1E
20	М	REGTRM value for 1.8V
21	М	IOSC ITRM value for 16MHz
22	М	IOSC VTRM value for 16MHz
23	М	LVDTHD value for detection of 4.0V
24	М	LVDTHD value for detection of 3.0V
25	М	IOSC ITRM value for 12MHz
26	М	IOSC VTRM value for 12MHz
27	М	IOSC ITRM value for 8MHz
28	М	IOSC VTRM value for 8MHz
29	М	IOSC ITRM value for 4MHz
2A	М	IOSC VTRM value for 4MHz
2B – 2C	М	Temperature Offset LSB/MSB
2D	М	Temperature Coefficient
2E – 2F	М	Internal Reference LSB/MSB
30 – 38	М	Reserved
39	М	Checksum for 0x20 – 0x39
3A – 3F	М	Retention Value
40	M/U	Boot Code Wait Time. Boot code uses this byte to determine the ISP wait-time. This wait-time is necessary for stable ISP. After user program download, the wait time can be reduced to minimize power-on time. Each "1" in bit [1-0] constitute 1 second and bits [3-2] constitute 2 second and bits [7-6] are I2CSCL2 and I2CSCL1 check. For example, 0b10000111 is 4 second waits time and also checks I2CSCL2 pad status. If I2CSCL2 is low, then wait time of 6 second is used

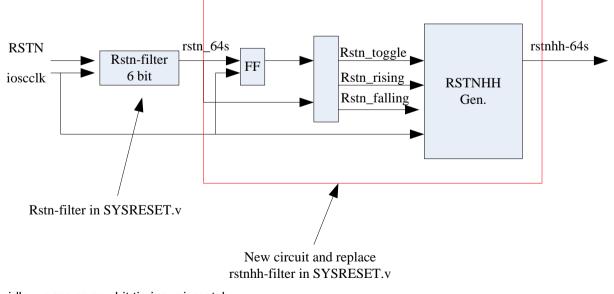
		regardless of bit [3-0] setting. The maximum wait time is 6 second, and minimum wait time is 0 second.
41	M/U	Boot Code LVR
42	M/U	User Code Protect L
43	M/U	User Code Protect H
44 - FF	U	User One-Time Programmable Space


Note 1: M data cannot be modified and can only be written in writer mode when the entire Flash is erased. Note 2: U data reads out as FF after the Flash is erased. It can only be programmed once after the Flash is mass erased.

****** The erasure of IFB or modifications of manufacture information in IFB void any manufacture warranty.


**** This table is for reference only. Please refer to most updated AP note and boot code documents.

18.2 <u>Test Mode and Writer Mode Entry from RSTN</u>


RSTN pin serve as external reset input. With proper input waveform, RSTN is also used to enter test and WRITER mode. The waveform starts with RSTN=0, and uses duty cycle to encode bit stream. Each bit time is divided into 16-T and is encoded into 4 valid states as shown in the following.

The entry is allowed in the following exact sequence. And if RSTN=1 for over 2 msec, then the test mode is forced to exit.

The sequence is initiated for RSTN=0 > 4msec (BREAK field), then followed by three SYNC bit, and two bytes sequence and a T-S bit. RSTN then must returned to 0 to maintain the test mode. If the sequence is not exactly matched, a BREAK field must be inserted to start over the sequence. The hardware block diagram is shown in the following and key parameters are also illustrated.

1. idle : porn or any bit timing mismatch

or RSTN go High in Tshl stage

- or RSTN =1 over 2ms
- or sync-timeout or bit time-over
- 2. break frame: stage in idle, RSTN go low and keep low > 2^16 * Tisoc (40-100ns) ~=(2.6~6.4ms)

3. sync: after three SYNC pulse, the controller auto calculate "bit-time" and store value into register buffer RSTNCS[15-0], default bit time = 800us (isoc=16Mhz)

- 4. byte1 = 8'h5A
- 5. byte2 = 8'h96
- 6. Tshh, match TS timing
- 7. Tshl: RSTNHH=1
- 8. bittime over: (T-0 | T-1 | T-s) period > 18Tq
- 9. sync-timeout: T-sync period > 2^15 x Tisoc (40~100ns)
- ~=(1.3~3.2ms)

18.3 <u>Writer Mode</u>

Writer Mode (WM) is used by the manufacturer or by users to program the flash (including IFB) through a dedicated hardware (Writer or Gang Writer). Under this set up, only WM related pins should be connected and all other unused pins left floating. Writer mode follows a proprietary protocol and is not released to general users. Users must obtain it through a formal written request to the manufacturer and must sign a strict Non-Disclosure-Agreement.

The Writer Mode provides the following commands.

ERASE Main Memory ERASE Main Memory and IFB READ AND VERIFY Main Memory (8-Byte) WRITE BYTE Main Memory READ BYTE IFB WRITE BYTE IFB Fast Continuous WRITE Fast Continuous READ The writer mode is protected against code pin

The writer mode is protected against code piracy. The power-on state of the device deactivates the writer mode. Only ERASEMM and ERASEMMIFB, and READVERIFYMM commands can be executed. It is activated by READVERIFY the range of 0x0EFF8 to 0x0EFFF where a security key can be placed by the user program. The probability of guessing the key is 1 in 2^64 = 1.8E19. Since each trial of READVERIFY takes 10usec, it takes about 6E6 years to exhaust the combinations. If the key is unknown, a user can choose to issue the ERASEMM command then fully erase the entire contents (including the key). Once fully erased, all data in the flash is 0xFF, and it can be successfully unlocked by READVERIFYMM with 8-bytes of 0xFF.

The users must not erase the information in IFB. And the user should not modify the manufacturer data. Any violation of this results in the void of manufacturer warranty.

PIN	LQFP-64 PIN NO.	LQFP- 48/ QFN-48 PIN NO.	TYPE	WRITER MODE PIN DESCRIPTION
VDD	8, 42	4, 30	Р	VDD should be connected to a solid 5.0V supply with good decoupling to VSS
VSS	24, 64	19, 48	G	Tie to 0V and have good decoupling to VDD
VDD18	43	31	PO	Have a 47uF and a 0.1uF good decoupling to VSS
RSTN	44	32	IN	Pull to 5.0V through 1KOhm to enter to WRITER Mode.
P2.3	41	29	0	BUSY status
P2.4	40	28	0	TDO Data Output
P2.5	39	27	I	TDI Data Input
P2.6	38	26	I	TCLK Clock Input

18.3.1 Writer Mode Pins

		1		
P2.7	37	25	I	TENB Test Enable Input. Low assertion.

18.4 Boot Code and In-System-Programming

After production testing of the packaged devices, the manufacture writes the manufacturer information and calibration data in the IFB. At the last stage, it writes a fixed boot-code in the main memory residing from 0x0F000 to 0xF7FF. The boot code is executed after resets. The boot code first reads 0x0F7F0 to 0xF7FF, and if any bytes of these is not 0xF7, it skips the remaining of the boot code and jumps to 0x0000 as a normal 8051 reset. If all bytes are in 0x0F7F0 to 0xF7FF are 0xFF, the boot code scans the I²C slave 0 and 1, as well as UART0 for any In-System-Programming request. This scanning takes about 10msec. If any valid request is valid during the scan, the boot-code proceeds to follow the request and performs the programming from the host. The default ISP commands available are

UNLOCK DEVICE NAME BOOTC VERSION READ AND VERIFY Main Memory (8-Byte) ERASE Main Memory exclude Boot Code ERASE SECTOR Main Memory WRITE BYTE Main Memory SET ADDRESS CONTINUOUSE WRITE CONTINUOUSE WRITE CONTINUOUS READ READ BYTE IFB WRITE BYTE IFB

Similar to writer mode, ISP is in default locked state. No command is accepted under locked state. To unlock the ISP, an 8-byte READVERIFY of 0x0EFF8 to 0x0EFFF must be successfully executed. Thus default ISP boot program provides similar code security as the Writer mode.

19. <u>Electrical Characteristics</u>

19.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNIT	NOTE
VDD	Supply Voltage	5.5	V	
ТА	Ambient Operating Temperature	-40 –125	°C	
TSTG	Storage Temperature	-65 – 150	°C	

19.2 <u>Recommended Operating Condition</u>

SYMBOL	PARAMETER	RATING	UNIT	NOTE
VDD	Supply Voltage for IO and 1.8V regulator	2.0– 5.5	V	
TA	Ambient Operating Temperature	-40 – 85	°C	

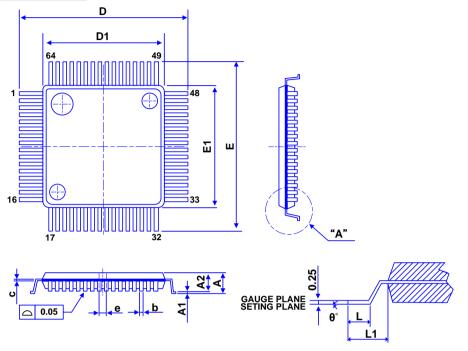
19.3 DC Electrical Characteristics (VDDHIO=VDDHA=3.0V to 5.5V TA=-40°C to 85°C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
Power Supp	bly Current					
IDD Normal	Total IDD through VDD at 16MHz	-	7	-	mA	
IDDVF	Total IDD Core Current versus Frequency	-	0.5	-	mA/ MHz	
IDD, Stop	IDD, stop mode	-	150	-	uA	Main regulator on
IDD, Sleep	IDD, sleep mode	-	25	-	uA	Main regulator off
RSTN Reset	t					
VIHRS	Input High Voltage	+1.1	-	-	V	
VILRS	Input Low Voltage	-	-	0.5	V	
VRSHYS	RSTN Hysteresis	-	0.7	-	V	VDD18=1.8V
GPIO DC Ch	naracteristics		<u>.</u>			
VOH,4.5V	Output High Voltage 1 mA	-	-0.2	-0.5	V	Reference to VDD
VOH,4.5V	Output High Voltage 2 mA	-	-0.3	-0.7	V	Reference to VDD
VOL,4.5V	Output Low Voltage 4 mA	-	0.2	0.4	V	Reference to VSS
VOL,4.5V	Output Low Voltage 8 mA	-	0.3	0.5	V	Reference to VSS
VOH,3.0V	Output High Voltage 1 mA	-	-0.3	-0.6	V	Reference to VDD
VOH,3.0V	Output High Voltage 2 mA	-	-0.4	-0.8	V	Reference to VDD
VOL,3.0V	Output Low Voltage 4 mA	-	0.2	0.4	V	Reference to VSS
VOL,3.0V	Output Low Voltage 8 mA	-	0.3	0.6	V	Reference to VSS
VIH	Input High Voltage	2.2	-	-	V	
VIL	Input Low Voltage	-	-	1.1	V	
VIHYS	Input Hysteresis	100	300	600	mV	
RPU	Equivalent Pull-Up resistance, 3.3V	-	350K	-	Ohm	
IKF O	Equivalent Pull-Up resistance, 5.0V	-	200K	-	Ohm	
RPD	Equivalent Pull-Down Resistance, 3.3V	-	200K	-	Ohm	
IKF D	Equivalent Pull-Down Resistance, 5.0V	-	125K	-	Ohm	
REQAN	Equivalent ANIO Switch Resistance, 5V	-	500	-	Ohm	One ANIO Switch
NEQAN	Equivalent ANIO Switch Resistance, 3.3V	-	800	-	Ohm	One ANIO Switch
GPIO 2 Ana	log Switch DC Characteristics					•
RPULAT	Equivalent Pull-Up Resistance for Latch	-	10K	-	Ohm	Measured at VDDHIO
SAR ADC		·				
VINSAR	Input DC Range	0	-	VDD- 1.2V	V	REF=VDD, FS=VDD
		0	-	VDD1	V	REF=VDD18

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
				8		
LINSARM	SAR ADC Accuracy 0.5V to REF-0.5V	-	+/- 2	-	LSB	After calibration
FADC		-	-	8	MHz	VDD>= 3.0V
FADC	ADC maximum frequency	-	-	1	MHz	VDD < 3.0V
	ADC conversion time	-	4	-	usec	VDD >= 3.0V
TCONV		-	32	-	usec	VDD < 3.0V
VOLTAGE	DAC					
VOUT	Output Range	0	-	³₄ VDD	V	For normal accuracy
		-	+/- 2	-	LSB	Normal output range
LINDAC	ADAC Accuracy	-	+/- 10	-	LSB	0 – 0.5V
		-	+/- 12	-	LSB	3/4 VDD to VDD
Low Supply	y (VDDHR) Voltage Detection					
VDET	Detection Range	2.2	-	5.0	V	Setting by LVDTHD
VDETHYS	Detection Hysteresis	-	100	-	mV	

19.4 AC Electrical Characteristics (VDD = 3.0V to 5.5V TA=- 40° C to 85° C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
System Clock and Reset						
FSYS	System Clock Frequency	-	16	25	MHz	
FIOSC	Crystal Oscillator Frequency	1	16	25	MHz	
TSIOSC	Stable Time for IOSC after power up	50	-	-	msec	VDD >3.0V
Supply Tim	ing					
TSUPRU	Maximum VDD Ramp Up time	-	-	50	msec	
TSUPRD	Maximum VDD Ramp Down Time	-	-	50	msec	
TPOR	Power On Reset Delay	-	10	-	msec	IOSC=16MHz
IOSC	•					
	IOSC calibrated 16MHz	-1	0	+1	%	
FIOSC	Temperature and VDD variation	-2	0	+2	%	
SIOSC						
FSIOSC	Slow Oscillator frequency	-	32	-	KHz	
IO Timing						
TPD3 ++	Propagation Delay 3.3V No load	-	6	-	nsec	
TPD3 ++	Propagation Delay 3.3V 25pF load	-	15	-	nsec	
TPD3 ++	Propagation Delay 3.3V 50pF load	-	20	-	nsec	
TPD3	Propagation Delay 3.3V No load	-	5	-	nsec	
TPD3	Propagation Delay 3.3V 25pF load	-	12	-	nsec	
TPD3	Propagation Delay 3.3V 50pF load	-	15	-	nsec	
TPD5 ++	Propagation Delay 3.3V No load	-	5	-	nsec	
TPD5 ++	Propagation Delay 3.3V 25pF load	-	12	-	nsec	
TPD5 ++	Propagation Delay 3.3V 50pF load	-	16	-	nsec	
TPD5	Propagation Delay 3.3V No load	-	4	-	nsec	
TPD5	Propagation Delay 3.3V 25pF load	-	9	-	nsec	
TPD5	Propagation Delay 3.3V 50pF load	-	12	-	nsec	
Flash Memo	ory Timing					
TEMAC	Embedded Flash Access Time	-	35	45	nsec	TWAIT must > TEMAC


CS5523 PRELIMINARY

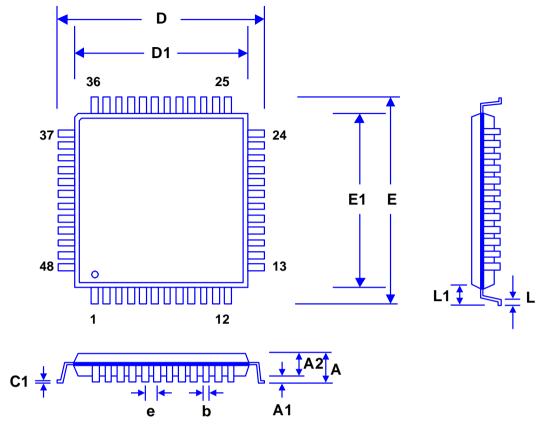
SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
TEMWR	Embedded Flash Write Time	-	20	25	usec	
TEMSER	Embedded Flash Sector Erase Time	-	2	2.5	msec	
TEMMER	Embedded Flash Mass Erase Time	-	10	12	msec	
FSPFM	SPI Flash Clock Frequency	1	64	80	MHz	
SAR ADC						
FSARADC	Maximum SAR ADC Frequency	-	-	4	MHz	
TSARADC	Conversion time of SAR ADC	-	16	-	Cycle	ADC clock cycles
TSADCSE	Set up time for SAR ADC channel select	250	-	-	nsec	
Analog Comparator						
TDACMP	Analog comparator delay	-	-	250	nsec	

20. PACKAGE OUTLINE

20.1 64-pin LQFP

DETAIL "A"

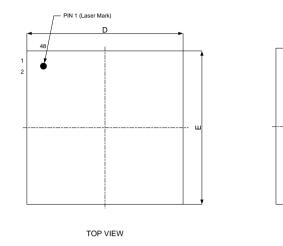
CVMDOL	DIMENSIONS IN MILLIMETERS					
SYMBOL	MIN.	NOM.	MAX.			
Α	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.13	0.18	0.23			
с	0.09	0.09 -				
D		9.00 BSC				
D1		7.00 BSC				
е		0.40 BSC				
E	9.00 BSC					
E1		7.00 BSC				
L	0.45	0.45 0.60 0.75				
L1		1.00 REF				
θ°	0°	0° 3.5° 7°				

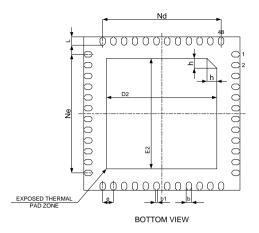

Notes:

1. JEDEC outline: MS-026 BBD.

- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm.

20.2 <u>48-pin LQFP</u>


SYMBOL	DIMENSIONS IN MILLIMETERS				
STWBOL	MIN.	MAX.			
A	-	1.6			
A1	0.05	0.15			
A2	1.35	1.45			
c1	0.09	0.16			
D	9.00 BSC				
D1	7.00 BSC				
E	9.00 BSC				
E1	7.00 BSC				
е	0.5 BSC				
b	0.17	0.27			
L	0.45	0.75			
L1	1 REF				

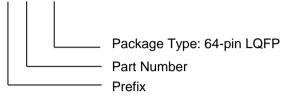

Notes:

- 1. JEDEC outline: MS-026 BBC.
- 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm.

20.3 <u>48-pin QFN</u>

SIDE VIEW

	DIMENSIONS MILLIMETER					
SYMBOL	MIN.	NOM.	MAX.			
А	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A2	0.18	0.20	0.23			
b1		0.16 REF				
b	0.18	0.25	0.30			
D	6.90	7.00	7.10			
D2	4.50	4.60	4.70			
E	6.90	7.00	7.10			
E2	4.50	4.60	4.70			
е	0.50 BSC					
Ne	5.50 BSC					
Nd	5.50 BSC					
L	0.35	0.40	0.45			
h	h 0.30		0.40			


4

21. ORDERING INFORMATION

Prefix	Part Number	Package Type	Remark
CS	5523	G: LQFP	64-pin LQFP
		AG: LQFP	48-pin LQFP
		W: QFN	48-pin QFN

Example: CS5523G

DISCLAIMER AND DECLARATION

1. Copyright © 2018 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

- a.) the risk of injury or damage has been minimized;
- b.) the user assume all such risks; and
- c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances.
- 2. Applications in medical appliances, life support devices system or flight vehicle using ISSI's products are not authorized without express written approval of ISSI.

22. <u>Revision History</u>

22.1 <u>V0.11</u>

Modified general descriptions and features.

Update block diagram and pin out.

Removed XOSC section.

Modified RTC section. Power domain, CLRCNT description.

Add PLL descriptions.

Update Buzzer Controller.

Modified LCD/LED Controller.

Modified Touch Key Controller. Make Timer/VAL as 24-bit. Make moving average as 16-bits. Add start delay and abort. Add analog configurations and pseudo-random bit stream.

22.2 <u>V0.12</u>

PWM Triggering ADC.

I2CM and I2CS clock rate.

T5 clock select add PLL.

LCD/LED Clock scaling.

TK Moving Average (RO) and Threshold to 24-Bit.

Add PGA.

Modify analog pin out.

Change SARADC clock scaling.

Remove VDD18 pin and change internal compensation.

Add SEG31.

Change RSTN test mode.

Modified CKSEL[7-4] for IOSCDIV[3-0].

22.3 <u>V0.13</u>

Modify Reset description and block diagram.

22.4 <u>V0.14</u>

Modify ADC to single channel. Remove triggering. Add PGA. Modify Pin connection accordingly. Modify LCD control ENCOM to reflect SEG[31-28] switch.

22.5 <u>V0.15</u>

22.6 <u>V0.16</u>

Change Slow IOSC to 30KHz.

Modify IOSC Divider Setting (CKSEL) and the default to IOSC/16. Modify RTC description to fit independent supply.

22.7 <u>V0.17</u>

ADC.

PGA change to reverse polarity.

22.8 <u>V0.18</u>

Add EUART3 and EUART4. Modify pin connection accordingly.

22.9 <u>V0.19</u>

Add VDDC pin.

Remove REGTRM. Add REF measurement in IFB.

22.10 <u>V0.20</u>

Feature description.

Block diagram modify ADC-input number change to 16.

Pin connection, p01, p04, p05, p10, p11, p12, p13, p23, p63, p64.

XFR: PIOEDGR3, PIOEDGR4, PIOEDGF3, PIOEDGF4.

SFR: CKSEL- Wakeup delay time option - 528us, 1ms, 2ms, 4ms.

SFR: SFIFO2, SFIFO3, SFIFO4.

Modified ADC to include REFSEL for VDDH or VDDC.

22.11 <u>V0.21</u>

Add VXSEL for PGA reference selection. Clarify ADC AVG definitions. CMPD input merge with CMPA input. P1.6 can detect two thresholds at the same time. Add CLKOUT function to P6.6. Section 3.5. Add more detail description on GPIO Wake-Up.

22.12 <u>V0.22</u>

Change PLLM to 9-bit. Default PLLM= 0x100. Add P6.6 for BGTEST. Add REGTRM register back. Remove Section 3.8 LVR18 and other descriptions. Also modified Section 1.1 System Reset diagram and descriptions.

22.13 <u>V0.23</u>

PLL add LPFCLMP control to clamp the LPF at 1.2V. Feature add EUART3 and EUART4. Add STEPCTRL single step control register description.

22.14 <u>V0.24</u>

Modify VDDRTC, RTCXI, RTCXO pin sequence. IFB is 256B consistency.

22.15 <u>V0.25</u>

Move the sequence of CPU description.

Clarify MOVX A,@Ri Instruction and DPXR, MXAX registers.

Remove redundant STATUS Register Description in Clock Control Section. Move some description to STATUS in CPU register section.

Clarify some DPX carry issue. Clarify RWT (Reset WDT) bit description. Modify ADCAL/ADCAH to ADCL/ADCH. Modify TKCMVS1/TKCMVS2.

22.16 <u>V0.26</u>

Add BZSNMUTE, LVDTHH register. Modify ADC/KEY/CMP analog pin switch description. Modify buzzer frequency is defined by BZCLK/(BZFRQ[8-0]+1)/2. Modify key stored address to EFF8 ~ EFFF.

22.17 <u>V0.90</u>

Preliminary version release.

22.18 <u>V0.91</u>

Correct PIN connection of VDDRTC, RTCXI, RTCXO. Add Touch Key Interrupt to INT3. Update IFB definitions.

22.19 <u>V0.92</u>

Add I2CM Timeout. Update LED drive function description and application circuits. Add C-C TKC. Need to modify LIN fault.

22.20 <u>V0.93</u>

Correct several typing errors.

22.21 <u>V0.94</u>

Add 48-pin LQFP and 48-pin QFN package types. Update writer mode pin assignment. Add LED external drive mode description.